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Abstract

Particle swarm optimization, an evolutionary algorithm modeled after natural swarm

behavior, is used to generate an initial guess for designing fuel-optimal trajectories

in multiple dynamical environments. Trajectories designed in the vicinity of Earth

use continuous or finite low-thrust burning and transfer from an inclined or equato-

rial circular low-Earth-orbit to a geostationary orbit. In addition, a trajectory from

near-Earth to a periodic orbit about the cislunar Lagrange point with minimized im-

pulsive burn costs is designed within a multi-body dynamical environment. Direct

transcription is used in conjunction with a nonlinear optimizer to find locally-optimal

trajectories given the particle swarm optimization generated initial guess. The near-

Earth transfers are propagated at low-level thrust where neither the very-low-thrust

spiral solution nor the impulsive transfer is an acceptable starting point. The very-

high-altitude transfer is designed in a multi-body dynamical environment lacking a

closed-form analytical solution. Swarming algorithms excel at finding global optima

given a small number of design parameters. When continuous control time histories

are needed, employing a polynomial parameterization approach in conjunction with

particle swarm optimization successfully generates feasible solutions for small prob-

lems. For dynamical environments in which chaos is present, such as in a circular

restricted three-body system, particle swarm optimization gains utility due to a more

global search for the solution, but may be more sensitive to boundary constraints.

Computation time and constraint weighting are areas where a swarming algorithm is

weaker than other approaches. The design methodologies employed are useful when

an initial guess is not available for unorthodox trajectories or for designing in a com-

plex dynamical environment.
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MINIMUM-FUEL TRAJECTORY DESIGN IN MULTIPLE DYNAMICAL

ENVIRONMENTS UTILIZING DIRECT TRANSCRIPTION METHODS AND

PARTICLE SWARM OPTIMIZATION

1. Introduction

The field of optimization has broad relevance to nearly all technical disciplines

and fields. Optimization serves to answer what the lowest or highest value a desired

performance measurement can achieve given certain variables and constraints. The

desire to design minimum-fuel trajectories arises in the context of space because effi-

cient use of fuel reduces cost and allows for greater payload mass utilization. There are

a variety of optimization techniques equipped to operate in the variety of dynamical

environments used to model trajectories in space. However, most of these techniques

require an educated initial guess about the behavior of the trajectory. In complex

dynamical environments, an acceptable initial guess may not be readily available. To

remedy this concern, evolutionary algorithms are chosen for investigation due to their

ability to operate without an initial guess. Specifically, particle swarm optimization

is utilized due to its algorithmic simplicity. Given the generated initial guess, further

improvement is conducted by more robust numerical optimization techniques. The

trajectories designed are chosen based on current and future relevance to military

operations.

1.1 Motivation

During the transition into the early twenty-first century, the space domain has seen

an increase in traffic and usage. In this evolving environment, the United States has
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maintained a competitive edge over other nations in its space assets and technologies.

However, that edge may gradually be dulled or jeopardized as other space-faring

entities modernize and improve their own space programs.

Although the space domain is largely unpopulated and empty, it is popularly

described as a “congested, contested, and competitive” environment [8]. The reason

for this disparity is due to the existence of regions in the vicinity of Earth that

hold greater utility over other regions. Prime examples of this are geostationary

and Tundra orbits, where the spacecraft’s orbital period matches that of the Earth’s

period of rotation, allowing it to stay above a desirable region for long periods of

time if not indefinitely. This feature of matched periods is extremely attractive for

satellites that need to provide constant coverage such as SiriusXM R○, DirecTV R○, and

various communication and weather satellites [9,10]. As a result, this altitude band is

highly populated and frequented. In addition, low-Earth-orbit (LEO), often defined

to be greater than 160 kilometers and less than 2,000 kilometers in altitude, is also

rich in space assets due to its accessibility, affordability, and proximity benefits. The

benefits of this “ultimate high ground” result in a congested environment; thus, the

United States Air Force may find that new trajectory design strategies or new areas

of operations afford additional asset protection [11].

The President of the United States Barack H. Obama, in the 2011 National Se-

curity Space Strategy, stated that a key necessity for space planning is to stress the

requirements of mission continuation and sustaining operations. In response, the

“availability of alternate means for mission accomplishment” not only adds flexibil-

ity, but bolsters the resiliency of assets [12]. From a supplemental fact sheet released

by the Department of Defense and in the 2013 United States Air Force Posture State-

ment, “resilience is the ability of an architecture to support the function necessary

for mission success in spite of hostile action or adverse conditions” [13, 14]. A recent
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white paper from the Office of the Assistant Secretary of Defense further breaks down

resiliency into six underpinnings: disaggregation, protection, distribution, prolifera-

tion, diversification, diversification, and deception [15]. The principle of protection is

most relevant to this investigation because it calls for measures to “enable satellite

operators to restore function, capabilities, or capacity after a natural or anthropogenic

adverse event” [15]. An anthropogenic event is one which originates from human ac-

tivity. The satellite AsiaSat 3 demonstrated asset protection as well as the utility of

high-altitude, multi-body, trajectory design in its response to a mission threatening

contingency [16]. In essence, it was able to overcome the prohibitive fuel cost of a

large orbital inclination change by performing two successive lunar flybys in order to

be placed into its desired geosynchronous orbit. Applying this type of strategy to

military assets could very well increase resiliency especially in the area of protection.

In addition, trajectories designed in a complex dynamical environment acquire a level

of unpredictability that can also improve assets in their levels of “avoidance,” which

can be described as measures taken to prevent potential threats [13].

Low-thrust maneuvers are typically performed due to their high fuel efficiency and

are often executed by electrical propulsion systems. Historically, chemical propulsion

systems have been the predominant choice for space systems due to flight heritage

and reliability. However, in recent years, electric propulsion has gained popularity as

well as successful flight demonstration and research. In fact, Boeing, the main GPS

satellite provider to the Air Force, has been transitioning to electric propulsion and has

even demonstrated successful operation of an “all-electric satellite” [17]. Although the

lower thrust levels associated with electric propulsion may provide more fuel efficiency,

this comes at the cost of longer time of flight. Designing at thrust acceleration levels

between very-low-thrust and high-thrust gives the designer an intermediate option

for balancing fuel expenditure and time of flight.
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Cost has always been one of the major concerns for operating in space. Not

only are support and maintenance expensive, but the mission designer must also be

cognizant of the cost of maneuvers and station-keeping. The optimization techniques

applied in this investigation operate as means for cost reduction in both mission

support as well as mission operating costs. Primarily, the techniques are used to

decrease the cost of satellite maneuvers by finding an optimal path for the satellite to

fly with minimal fuel expenditure. The tools showcased in this investigation also aid

the mission designer when operating at thrust accelerations without viable heuristic

approximations or in complex dynamical environments.

1.2 Research Objectives

The fundamental question of this investigation is how to design minimum-fuel tra-

jectories when an analytical approximation is unavailable and/or when the dynamical

environment is complex. The process of designing an optimal trajectory, regardless

of discipline, typically requires some sort of optimization technique. When the tra-

jectory is to be designed in a nonlinear environment, as is the case for most problems

designed in a space environment, an initial guess must be given to the chosen opti-

mization scheme. The accuracy of the initial guess can dictate whether or not the

optimal solution is found or if one is found at all. Particle swarm optimization (PSO)

belongs to a class of optimizers called evolutionary algorithms that are unique in that

they mimic natural behavior. They have the advantage of a more global search of the

problem design space and do not require an initial guess. This investigation offers

PSO as a viable and effective technique for generating an initial guess when one is not

readily available. The initial guess is subsequently given to a more robust nonlinear

programming (NLP) solver for improvement. There are two problems investigated to

demonstrate the efficacy of this design strategy.
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1. Low-thrust, fuel-optimal, continuous and multiple-burn transfers from a copla-

nar and non-coplanar low-Earth-orbit to a geostationary orbit designed in a

two-body dynamical model with and without oblate Earth effects

2. Impulsive transfer from near-Earth to a periodic orbit about the Earth-Moon

cislunar (between Earth and Moon) collinear Lagrange point with minimized

burn costs designed in a multi-body dynamical environment

The first set of test cases is modeled in a restricted two-body (Earth-satellite) sys-

tem with and without oblate Earth perturbation effects. The transfers are propagated

at thrust acceleration levels where the literature reviewed in this investigation lacks

analytical optimal solutions for an initial guess. Therefore, PSO is used to generate

the initial guess that is provided to a more robust nonlinear optimizer.

The second case utilizes a circular restricted three-body system as well as invari-

ant manifold dynamics. Due to the complexity of the dynamical environment and

existence of chaotic (sensitive to initial conditions) regions of the phase space in the

circular restricted three-body problem (CR3BP), a closed-form analytical solution

and thereby an initial guess is unavailable. However, analytic work is used to provide

insight into the problem so that the search space is more efficiently bounded, com-

putation time is reduced, and convergence of the PSO algorithm is enhanced. The

PSO-generated initial guess (PSOIG) is then improved via a nonlinear programming

solver.

1.3 Decision Tree for Trajectory Optimization Techniques

When designing and optimizing spacecraft trajectories, the choice of techniques

to employ depends on multiple factors. Such factors that affect the decisions in the

current investigation are the dynamical model, the thrust level, the burn profile, the
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transcription method, and the solving algorithm. Many of the decisions in the current

work are motivated by whether or not an initial guess is readily available. Figure 1

provides a graphical depiction of the decision tree for this investigation.

2BP 

CR3BP 

Model Thrust Level 

Low 

High 

Very-low 

Burn Profile 
Continuous 

Finite-burns 

Impulsive 

Analytical Optimal Solution 
Spiral Solution 

Continuous 

Hohmann Transfer 
Combined Plane Change 

Bi-elliptic Transfer 

None 
Optimization and 

numerical techniques 
required 

Nonlinear 
Optimization 

Direct 

Indirect 

Transcription Method Solution Method 

PSO 

NLP 

Initial Guess Required? 
Yes 

No 

Choice Made 
Possible Choice 

Figure 1. Decision tree for space trajectory optimization in the current investigation

In the decision tree, the green arrows denote decision routes that are taken in

the current investigation. Even though the green paths are the ones taken, the black

paths are also viable depending on the circumstances. The specific rationale behind

each choice is elucidated in future discussions. However, the decision tree is offered

to provide context for the current design approach within neighboring options. The

relevant literature discussing many of the possible paths is offered in Section 2.5. The

choice to offer the previous works at the end of Chapter 2 is motivated by a desire

to present the background theory first in order to understand the significance of each

previous contribution.
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1.4 Document Preview and Special Notes

The body of this investigation attempts to demonstrate the flexibility and efficacy

of using PSO as a method for generating a useful initial guess for minimum-fuel

spacecraft trajectories, especially when one is not available. To do this, multiple test

cases are devised with different constraints and in multiple dynamical environments.

The relevant background, methodology, results, and analysis are organized as follows:

∙ Chapter 2: A derivation of the two-body problem (2BP) as well as a description

of different coordinates used in this investigation are provided. The circular-

restricted three body problem and relevant design tools are then introduced

along with dynamical systems theory. Summaries of parameter and functional

optimization are given, followed by descriptions of the optimization methods

utilized in the design process. The fundamentals of propulsion are summarized,

and a synopsis of previous contributions is given.

∙ Chapter 3: A polynomial-based approach is used to parameterize the control

time histories of low-thrust transfers in the two-body problem. PSO is used to

optimize the polynomial coefficients of a sequence of polynomials that approx-

imate the optimal control time histories of the trajectories. The initial guesses

are then given to a nonlinear programming algorithm for improvement. The

chapter begins by detailing the methodology for generating the initial guesses

as well as improving them. Next, inclination changes, variable burn profiles,

and oblate Earth effects are factored into the design scenarios, and the results

are presented. The chapter concludes with a discussion of the feasibility of the

trajectories as well as how PSO performed.

∙ Chapter 4: PSO is used to determine the optimal time, magnitude, and direction

of an impulsive burn to target an insertion point on a libration point orbit’s

7



stable manifold trajectory. A range of insertion points is targeted by PSO to

provide multiple initial guesses for improvement. Once on the stable manifold

trajectory, the satellite coasts until a final burn is made to enter the desired

libration point orbit (LPO). The design methodology is given at the beginning

of the chapter followed by the trajectory design and results. A discussion of the

final trajectory as well as the utility of PSO is given to conclude the chapter.

∙ Chapter 5: A discussion of the results, limitations of the current investigation,

recommendations for future work, and concluding remarks are given.

As a special note, Chapters 3 and 4 are organized to contain their specific test

case methodologies as well as their respective results. This choice is made to prevent

confusion when transitioning between different dynamical models. Also, depending

on the dynamical environment, the design approaches and processes applied vary and

necessitate independent attention. It is important to state that Chapters 3 and 4 are

not independent of each other, but they offer two scenarios in which PSO may be

useful to the mission designer.

Before continuing, it is also important to highlight that the chosen propulsive

specifications used in the low-thrust scenarios are on the upper fringes of what is

possible with current technology. This choice is made to create a particularly unique

and difficult dynamical environment. Any resulting low-thrust trajectories should be

treated as future potential design options when the required propulsive technologies

are more readily available.

A final area for special attention directly relates to the dynamical model being

used for trajectory design. Nondimensionalized units are utilized throughout this

investigation for numerical efficiency as well as greater quantitative intuition when

designing. The characteristic quantities vary based on the dynamical model in use.

Therefore, attention should be given to the specific dynamical model as well as how
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the nondimensionalization for each dynamical model is conducted. The parameter

defined as 𝜇 also varies depending on the dynamical model. In the context of the

restricted two-body problem, 𝜇 is the gravitational parameter of the Earth. For the

Earth-Moon CR3BP, 𝜇 is a mass ratio that depends on the mass of the Earth and the

Moon. Due to this difference, attention to the dynamical model in focus is important.

1.5 Chapter Summary

This chapter introduced the problem, motivated the current investigation, and

summarized the organization of this document. The next chapter details the necessary

theory and context of the present investigation.
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2. Background and Literature Review

The background theory and context for the present investigation are presented in

this chapter. First, the two-body problem as well as necessary coordinates are derived

and presented for use in the low-thrust transfers. Next, the circular restricted three-

body problem and relevant design tools are introduced for direct application in the

high-altitude trajectory design. The optimization techniques that are employed for

trajectory design are explained in the optimization section. Finally, the fundamentals

of satellite propulsion as well as relevant works in literature are given. Overall, this

chapter provides the theory behind the methodologies used in the next two chapters

as well as the scholarly research context of the present investigation.

2.1 The Two-Body Problem

In order to demonstrate the flexibility and efficacy of the methods employed in

this investigation, the initial investigations are conducted in a simple, but relevant,

dynamical model for satellite trajectories, the restricted two-body problem with per-

turbing accelerations caused by an oblate Earth. This simple model is used before

transitioning into a more complex multi-body dynamical environment, specifically,

the circular restricted three-body problem.

2.1.1 Historical Context

The 2BP was originally devised in order to explain the motion of celestial bodies.

However, it was not the first model used to explain planetary motion. Claudius

Ptolemy in the second century A.D. is often credited with one of the first attempts

at explaining celestial motion. His “Ptolemaic scheme” is centered near the Earth

with the planets revolving in a large circle called the deferent and with smaller circles
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called epicycles [18]. It was not until Nicholas Copernicus in 1543 that a heliocentric

model was seriously proposed [18]. The Copernican system is a rearrangement of the

“Ptolemaic scheme” and matches the motion of the planets with greater accuracy

due to the transition to a sun-centered system. In 1609, Galileo’s improvements on

existing telescopes allowed him to take astronomical measurements and observations

precise enough to confirm the validity of a heliocentric solar system [19]. Johannes

Kepler is another significant contributor to describing the motion of the planets.

By working under the most skilled astronomical observer at the time, Tycho Brahe,

Kepler had access to Brahe’s reliable observational data and, during the early 17th

century, was able to devise his three laws of planetary motion [20]. The laws state

that [2]:

1. The motion of the planets trace out ellipses with the sun located at a focus.

2. The line drawn from the sun to a planet sweeps out equal area in equal time.

3. The square of the period of a planet is proportional to the cube of the semimajor

axis of the orbit.

Isaac Newton published his Principia Mathematica Philosophia Naturalis in 1687.

The document contains many of the discoveries necessary to answer the question of

why the planets move according to Kepler’s laws [21]. In it, Newton presented his

three laws of motion:

1. A particle at rest remains at rest, and a particle in motion remains in motion

unless the net force acting on the particle is non-zero.

2. The force exerted on a particle is equal to the time rate of change of its mo-

mentum.

3. For every force there is always an equal and opposite reaction force.
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The three laws of motion sufficiently describe motion for most everyday occurrences,

but they cannot singularly explain the motion of stars and planets. It is Newton’s

law of universal gravitation that provides another fundamental axiom necessary to

explain the motion of celestial bodies. It states that two objects exert an attractive

force on each other that is proportional to the product of the masses and is inversely

proportional to the square of the distance between them [1]. In vector notation form,

it is expressed in equation (1)

𝐹 𝑔 =
𝐺𝑚1𝑚2

𝑟2
𝑟 (1)

where 𝐺 is the universal gravitational constant, 𝑚1 and 𝑚2 are the masses of the two

bodies in attraction, and 𝑟 is the distance between the two bodies. In the current

investigation, bold symbols denote vector quantities and the ^ symbol is used to

denote vectors of unit length. Newton’s universal law of gravitation serves as a

starting point for solving the problem of two bodies.

2.1.2 Two-Body Derivation

The following two-body problem derivation is modeled after Section 2.2 in Wiesel

as well as Section 1.3 in Bate, Mueller, and White [1, 18]. Just as the name implies,

in the 2BP, there are only two bodies taken into consideration. It is assumed that

the system is closed and that the bodies are not affected by any external forces and

the only internal force allowed is the gravitational force of attraction [1]. Also, the

two bodies are assumed to have spherically symmetric gravity fields and center of

masses located at their respective geometric centers [1]. These assumptions do not

prohibit one mass from being larger than the other or even equal in size as in a binary

star system. In order to model the relative motion of two bodies due to gravitational

attraction, a reference frame must be chosen. It is important to choose an inertial
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reference frame, or one that is not accelerating. A nuance here is that the reference

frame can have constant velocity without violating the requirement. In this model,

the inertial reference frame of choice is a Cartesian, orthonormal triad denoted with

the symbols �̂�, 𝑌 , and 𝑍.

𝑃1(𝑚1) 

𝑃2(𝑚2) 

𝑿� 

𝒀� 

𝒁� 

𝒓1 

𝒓2 

𝒓 
𝒓𝑐 

Figure 2. Two-body motion in an inertial reference frame

In Figure 2, 𝑟𝑐 is the vector from the origin to the system center of mass. Also,

𝑟 = 𝑟2−𝑟1. The positions, 𝑃1 and 𝑃2, define the locations of𝑚1 and𝑚2, respectively.

Applying Newton’s second law and the universal law of gravitation to both 𝑃1 and

𝑃2 yields equations (2a) and (2b).

𝑚1�̈�1 =
𝐺𝑚1𝑚2

𝑟2
�̂� (2a)

𝑚2�̈�2 =
−𝐺𝑚1𝑚2

𝑟2
�̂� (2b)

Equations (2a) and (2b), written in component form, represent six second-order, non-

linear, coupled ordinary differential equations, thus, twelve constants of the motion

are necessary to solve the system [18]. Adding equations (2a) and (2b) together

results in equation (3).
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𝑚1�̈�1 +𝑚2�̈�2 = 0 (3)

The next step is to define the vector from the origin to the center of mass of the

system in terms of 𝑟1 and 𝑟2.

𝑟𝑐 =
𝑚1𝑟1 +𝑚2𝑟2
𝑚1 +𝑚2

(4)

Substituting equation (4) into (3) and simplifying yields equation (5).

�̈�𝑐 = 0 (5)

Integrating equation (5) produces six arbitrary constants or half that is necessary to

solve the system defined by equations (2a) and (2b). A more physical interpretation

of equation (5) is that the center of mass of the system in non-accelerating, or it

moves linearly with constant velocity [18].

The next step requires contextual knowledge of the 𝑁 -body problem. The 𝑁 -body

problem is much like the problem formulated in this section; however, instead of two

bodies attracted gravitationally, 𝑁 bodies interact with each other. For the 𝑁 -body

problem, a total of 6𝑁 integrals of the motion are required to solve the system. For

the two-body problem, 𝑁 = 2, therefore, twelve integrals of the motion are required.

Regardless of the value for 𝑁 , there are only ten known integrals of the motion in the

𝑁 -body problem. The first six have already been demonstrated via the conservation

of linear momentum of the system’s center of mass. The next three are due to the

conservation of angular momentum, with the last integral of the motion coming from

the conservation of the system mechanical energy. In the present derivation, if a

different approach is not taken, the end result would be a total of ten integrals of the

motion found when a total of twelve are needed. Thus, a reduction to a relative 2BP
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is conducted.

Instead of solving for the motion of both masses, now the focus is placed on

defining the motion of the relative vector between both masses, 𝑟. To solve for the

relative motion between the two bodies, divide (2a) by 𝑚1 and (2b) by 𝑚2 then

subtract equation (2a) from (2b). The result is

�̈� = − 𝜇

𝑟3
𝑟 (6)

where 𝜇 is equal to 𝐺(𝑚1 + 𝑚2). Since this investigation is concerned with the

trajectories of artificial satellites whose masses generally pale in comparison to the

mass of the Earth, it is acceptable to simplify to 𝜇 = 𝐺(𝑚1). When making this

assumption, that 𝑚2 ≪ 𝑚1, the model is considered to be restricted. According

to Wiesel, 𝜇 is used in place of 𝐺 or 𝑚1 not only for concise notation, but also

because 𝜇 is much easier to calculate to a desirable precision. “The problem lies in

the fact the 𝐺 can only be measured in exceedingly delicate laboratory experiments

with known masses, while the product 𝜇 can be determined by accurate tracking of

earth satellites” [18]. It is important to note that this definition of 𝜇 differs from the

definition used in sections where a third body is considered; therefore, it is extremely

important to take note of which model is being used for trajectory design.

Equation (6) defines the relative 2BP. Employing the current reduction generated

a system that requires six integrals of the motion; however, the previous six that

were found as a result of the conservation of linear momentum no longer apply. The

equations of motion (EOMs) defined in equation (6), as they stand, can be used to

propagate the trajectory of a satellite in the 2BP. The next steps are taken to gain

more insight via the remaining constants of the motion. Also, six constants are still

needed in order to consider the system solved.

From physics, the radial gravity field from Newton’s universal law of gravitation
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is conservative, meaning an energy integral is conserved. To prove this, dot equation

(6) with �̇�.

�̇� · �̈� = − 𝜇

𝑟3
𝑟 · �̇� (7)

Consider for simplicity in the next few steps the restricted 2BP. The left-hand side

of the equation is equal to the time rate of change of specific kinetic energy where

specific means per unit mass of the spacecraft (𝑚2) [18].

�̇�

𝑚2

=
1

2

𝑑

𝑑𝑡
[�̇� · �̇�] = 1

2
[�̇� · �̈� + �̈� · �̇�] = �̇� · �̈� (8)

In equation (8), 𝑇 is the kinetic energy of the spacecraft. The right-hand side of

equation (7) requires more manipulation. This dot product is equal to the magnitude

of 𝑟 times the projection of the velocity vector (�̇� = 𝑣) in the radial direction. The

projection is the radial velocity, which is equal to the time rate of change of the

magnitude of 𝑟 [18]. Therefore, the right-hand side of equation (7) becomes

− 𝜇

𝑟3
𝑟�̇� = − 𝜇

𝑟2
�̇� (9)

The right-hand of equation (9) is the perfect time derivative of the specific potential

energy where 𝑉 is the potential energy [18].

− 𝑑

𝑑𝑡
(−𝜇

𝑟
) = − 𝜇

𝑟2
�̇� = − �̇�

𝑚2

(10)

So, equation (7), after substituting in the new expressions on both sides, becomes

�̇�

𝑚2

= − �̇�

𝑚2

(11)
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Integrating equation (11) is the final step to show that total energy is conserved.

𝜀 =
𝑇

𝑚2

+
𝑉

𝑚2

(12)

𝜀 =
1

2
𝑣2 − 𝜇

𝑟
(13)

In equations (12) and (13), the integration constant, 𝜀, is equal to specific mechanical

energy and is a constant of the motion. Specific mechanical energy is equal to the sum

of specific kinetic energy and specific potential energy. Substituting in the expressions

for specific kinetic energy and specific potential energy yields the “vis-viva” equation

in equation (13). Since the rate of change of the specific kinetic energy is equal to

the negative rate of change of the specific potential energy, if the satellite increases

in radius, it must consequently slow down to satisfy conservation of energy. The

opposite is also true. This type of insight offers potential heuristics to employ when

modeling in the two-body problem. Specific mechanical energy is the first of six

required integrals of the motion to solve the relative 2BP.

To generalize this conclusion, in the general 2BP, the “specific” terms are per unit

mass of a reduced mass. The reduced mass, 𝑚𝑟𝑒𝑑, is defined as

𝑚𝑟𝑒𝑑 =
𝑚1𝑚2

𝑚1 +𝑚2

(14)

When making the assumption in the restricted 2BP, that 𝑚2 ≪ 𝑚1, the reduced mass

approximately equals 𝑚2.

The next conserved quantity is angular momentum. To prove this, first, cross

equation (6) with 𝑟.

𝑟 × �̈� = − 𝜇

𝑟3
𝑟 × 𝑟 = 0 (15)

Equation (15) is equal to a zero vector because a vector is being crossed with itself.
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The left-hand side of equation (15) is equal to the time derivative of 𝑟 × �̇�. This is

a similar operation to the step taken in equation (8) via the chain rule. Integrating

𝑑
𝑑𝑡
(𝑟 × �̇�) = 0 yields the next integral of the motion [18].

𝑟 × �̇� =𝐻 (16)

Knowing that the cross-product produces a vector orthogonal to the radius and veloc-

ity vectors, the specific angular momentum,𝐻 , always points out of the orbital plane

and in a fixed direction. Thus, the motion of the satellite is confined to a plane. Also,

since the specific angular momentum is a three dimensional vector, three additional

constants of the motion are identified. The remaining two constants are necessary to

define the shape and orientation of the orbit. At the current step, four out of the six

required constants of the motion to solve the relative 2BP have been defined.

According to Wiesel, there have been many “ad hoc” approaches to extracting the

shape and orientation information from the EOMs [18]. Section 2.4 in Wiesel, Section

1.5 in Bate, Mueller, and White, and Section 3.4 in Chobotov provide, complete

derivations [1, 2, 18]. The first step is to cross both sides of equation (6) with 𝐻 .

�̈� ×𝐻 = − 𝜇

𝑟3
𝑟 ×𝐻 (17)

Using the vector identity, 𝐴× (𝐵 ×𝐶) = 𝐵(𝐴 ·𝐶)−𝐶(𝐴 ·𝐵), and expanding the

right side yields

𝑟 ×𝐻 = 𝑟 × (𝑟 × �̇�)

𝑟 ×𝐻 = 𝑟(𝑟 · �̇�)− �̇�(𝑟 · 𝑟)
(18)

Since 𝑟 · 𝑟 = 𝑟2 and 𝑟 · �̇� = 𝑟�̇�, equation (17) can be rewritten as shown in equation

(19) [18].
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𝑑

𝑑𝑡
(�̇� ×𝐻) =

𝜇

𝑟
�̇� − 𝜇�̇�

𝑟2
𝑟 (19)

The right-hand side of the previous equation is equal to the time derivative of 𝜇𝑟/𝑟.

Applying this knowledge results in a form of the equation that can be integrated.

𝑑

𝑑𝑡
(�̇� ×𝐻 − 𝜇

𝑟

𝑟
) = 0 (20)

The final step to prove the next integral of the motion is integrating equation (20) to

yield the equation below.

�̇� ×𝐻 − 𝜇
𝑟

𝑟
= 𝜇𝑒 (21)

The eccentricity vector, 𝑒, is a constant vector that lies in the plane of the orbit.

Within the orbit plane, 𝑒 points to perigee of the orbit or the point of closest approach

to the Earth. Conversely, the term apogee is defined as the point of furthest distance

from the Earth. The fact that 𝑒 must point within the plane of the orbit means that

it provides two, and only two, additional constants of the motion. However, since

four have already been defined and six are required to solve the relative 2BP, with

the addition of the constant vector, 𝑒, the problem is considered to be solved. The

most satisfying conclusion of the relative 2BP requires more manipulation, where an

additional dot product of both sides of equation (21) with 𝑟 is taken and the angle 𝜈

between 𝑒 and 𝑟 is introduced. The resulting orbit equation is

𝑟 =
𝐻2

𝜇(1 + 𝑒cos𝜈)
(22)

where 𝑒 is the scalar eccentricity of the orbit, and 𝜈 is called the true anomaly. True

anomaly is defined as the angle from 𝑒 to 𝑟 in the direction of motion or following

the “right-hand-rule” with the thumb pointing along 𝐻 . Equation (22) provides the
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magnitude of 𝑟 in terms of an angle corresponding to the position of the satellite and

other constants (𝐻, 𝑒, 𝜇). The magnitude of 𝑒 provides information about the shape

of the orbit, which is discussed in the next section. The satisfying conclusion is the

not so obvious realization that equation (22) is the polar form for a conic section [18].

That is, all orbits in the 2BP must be one of the five conic sections: circle, ellipse,

parabola, hyperbola, or a line.

Hyperbola 

Circle 

Ellipse 

Parabola 

Line 

Figure 3. Conic sections, adapted from Bate, Mueller, and White [1]

2.1.3 Classical Orbital Elements

For most near-Earth satellite applications, the orbits are either circular or ellip-

tical. The Earth, being the primary body and modeled as a point mass, is located

at the center of the circle or at one focus of the ellipse. Since geometric parameters

are useful in visualizing satellite orbits, the classical orbital elements (COEs) are now

introduced.

There are six standard COEs used to define the size, shape, and orientation of a

satellite’s orbit as well as the current satellite position in that orbit. Before defin-

ing the elements, a convenient inertial reference frame is first introduced. With the
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satellite orbiting the Earth, a geocentric-equatorial coordinate system is often cho-

sen. Instead of �̂�, 𝑌 , and 𝑍 used in the previous derivation as the arbitrary inertial

reference frame, 𝐼, 𝐽 , and �̂� is now used. The origin of the frame is centered at the

geometric center of the “spherical” earth. The 𝐼 axis points in the vernal equinox di-

rection, and the �̂� axis points to the North Pole [2]. The vernal equinox is considered

to be a sufficiently inertial direction (although it drifts slowly over time) and points

toward the first point of the Aries constellation. To be precise, the exact direction

points to where the first point of Aries was in 4,000 B.C. The vernal equinox direction

is also equivalently, and more practically, defined as the vector from the Earth to the

Sun on the first day of Spring in the Northern Hemisphere. Lastly, the 𝐽 axis com-

pletes the right-handed triad. See Figure 5 for a visual representation of the inertial

reference frame.

The first orbital element known as the semimajor axis, 𝑎, defines the size of the

orbit. For a circle, it is equal to the radius, and for an ellipse, it is equal to half the

length of the major or longest axis. The semiminor axis, 𝑏, appears frequently, but is

not one of the COEs. It is equal to 𝑎 in a circle and is half the length of the minor

axis of an ellipse. Lastly, the semilatus rectum, 𝑝, is another important parameter

and is depicted in Figure 4.

In describing the motion of satellites, it is helpful to define a few additional terms.

The period of an orbit in terms of the semimajor axis is given by the expression

Period = 2𝜋

√︃
𝑎3

𝜇
(23)

The equation makes intuitive sense because one orbit spans 2𝜋 radians and because

the mean motion, 𝑛, about the orbit is given by equation (24).

𝑛 =

√︂
𝜇

𝑎3
(24)
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Figure 4. Orbit size, adapted from Bate, Mueller, and White [1]

Multiplying the mean angular velocity or mean motion by the angular span of an

orbit logically yields the period of one revolution. Even though the satellite’s angular

velocity is, in general, variable (constant in circular orbits), the mean motion of the

spacecraft can be used to calculate the period for one revolution.

The second orbital element already introduced is the eccentricity, 𝑒, which is equal

to the magnitude of the eccentricity vector 𝑒. It defines the shape of the orbit and

is a dimensionless parameter. The table below provides ranges of eccentricity and

semimajor axis values and their associated conic sections [2].
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Table 1. Parameter ranges for conic sections

Semimajor axis Eccentricity Conic Section

𝑎 = 𝑟 0 Circle

𝑎 > 0 0 < 𝑒 ≤ 1 Ellipse

𝑎→ ∞ 1 Parabola

𝑎 < 0 𝑒 ≥ 1 Hyperbola

𝑎(𝜀), 𝑎 is a function of 𝜀 1 Line: Degenerate Ellipse, Parabola, or Hyperbola

The polar form of a conic section in equation (22) can also be written in terms of

the semilatus rectum and COEs by the expressions below.

𝑟 =
𝑝

1 + 𝑒cos𝜈
(25a)

𝑟 =
𝑎(1− 𝑒2)

1 + 𝑒cos𝜈
(25b)

An important note is that equation (25a) applies to circles, ellipses, parabolas, and

hyperbolas whereas equation (25b) applies to circles, ellipses, and hyperbolas. These

equations are useful in that they provide a relationship between the radius of the

satellite’s orbit and COEs.

The next three COEs define the orientation of the orbit plane. Inclination, 𝑖, can

be thought of as the tilt of the orbit plane. It is the angle measured from𝐾 to𝐻 [1].

Below are the varying orbit types based on inclination [2].
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Table 2. Orbit inclinations

Range Orbit Type

𝑖 = 0, 180 Equatorial

𝑖 = 90 Polar

0 ≤ 𝑖 < 90 Prograde Motion

90 < 𝑖 ≤ 180 Retrograde Motion

The right ascension of the ascending node, Ω, is defined as the angle between 𝐼

and 𝑛, where 𝑛 is the nodal vector that points to the ascending node. The ascending

node is the point where the satellite makes a south-to-north crossing of the equatorial

plane [2]. Ω can be thought of as the “swivel” of the orbit and ranges from 0 to less

than 360 degrees.

The argument of perigee, 𝜔, is measured from 𝑛 to 𝑒. It is the angle that orients

the perigee of the orbit within the orbit plane [2]. 𝜔 ranges from 0 to less than 360

degrees.

Lastly, true anomaly, 𝜈, is measured from 𝑒 to the current position, 𝑟, of the

satellite. True anomaly can also range from 0 to less than 360 degrees. True anomaly

is the only COE that is time varying in the 2BP.

With all six COEs, it is possible to completely define the motion of the satellite.

There are additional elements available for degenerate cases such as when 𝑖 = 0 or

𝑒 = 0; however, they are not introduced here. Section 2.3 of Bate, Mueller, and White

is an excellent reference for the alternate orbital elements [1].

There are a multitude of element sets that can be used depending on the ap-

plication. In addition to rectangular and polar elements, there are also equinoctial

elements that are formulated such that existing singularities are relocated to more

convenient locations [18].
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Figure 5. COEs in Earth-centered inertial frame, adapted from Chobotov [2]

Modified equinoctial elements are used in this investigation and are discussed in the

next section.

2.1.4 Modified Equinoctial Elements

When implementing a perturbation into the 2BP or any dynamical model for

spacecraft trajectories, it is worth using coordinates that emphasize the effects of

the disturbing acceleration [18]. This is because, in many cases, the disturbing ac-

celeration due to the perturbing force pales in comparison to the more dominant

accelerations such as the gravitational acceleration toward a nearby massive body. In

the 2BP, using the Lagrange planetary equations de-emphasizes the dominant two-

body motion and allows perturbations such as the Earth’s oblateness effects to be

more accurately modeled. A potential issue with using the Lagrange Planetary equa-

tions is the existence of singularities at low eccentricities and inclinations [18]. Since

the final orbit used for the 2BP test cases in the next chapter is circular and equato-

rial, choosing a slightly different set of coordinates is necessary. Modified equinoctial
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elements (MEEs) remove the eccentricity singularity and relocate the inclination sin-

gularity to 180 degrees. An inclination of 180 degrees defines a retrograde equatorial

orbit, which is not commonly used. The derivation of the MEEs can be found in

Walker with the final equations displayed below [22].

𝑝 = 𝑎(1− 𝑒2)

𝑓 = 𝑒cos(𝜔 + Ω)

𝑔 = 𝑒sin(𝜔 + Ω)

ℎ = 𝑡𝑎𝑛

(︂
𝑖

2

)︂
cos(Ω)

𝑘 = 𝑡𝑎𝑛

(︂
𝑖

2

)︂
sin(Ω)

𝐿 = Ω+ 𝜔 + 𝜈

(26)

The equations in (26) serve to replace the COEs when oblate Earth effects are

incorporated into the dynamical model. The next section discusses methods for in-

cluding perturbations in a dynamical model.

2.1.5 Perturbation Methods and Accounting for Oblate Earth Effects

For greater model accuracy, perturbing accelerations can be included to account

for additional forces that the spacecraft may encounter. Common perturbing acceler-

ations that are included in spacecraft trajectory models are drag due to the Earth’s

atmosphere, gravitational pull from additional celestial bodies, deformities in the ini-

tially assumed spherical gravity potential of the Earth, and solar radiation pressure.

In addition, propulsive acceleration due to low-thrust on a spacecraft can also be

modeled as a perturbation.

In practice, there are two approaches to modeling perturbations on a satellite. A

general perturbations method analytically models the perturbing forces and includes
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them in the EOMs such that they are still integrable. General perturbations theory

relies on the assumption that the perturbing accelerations are small compared to the

dominant forces in the model [23]. Conversely, a special perturbations method in-

corporates the perturbations into the EOMs and uses numerical integration to solve

for particular solutions. In one sense, special perturbations is synonymous with nu-

merical integration of the EOMs. The assumption of small perturbing forces is not

necessary for a special perturbations method, but as stated in the previous section, it

is often helpful to choose coordinates that emphasize the effects of the perturbations.

Special perturbations is a useful and often a necessary approach when modeling in a

dynamical environment that does not have a closed-form analytical solution or when

including perturbations that are not sufficiently small for a general perturbations

method.

In the current investigation, a special perturbations method is used to include

perturbations such as low-thrust acceleration and the oblate Earth effects into the

restricted 2BP model when conducting low-thrust trajectory design. The perturba-

tions are small enough such that perturbing a reference 2BP solution via numerical

integration sufficiently approximates the motion of the spacecraft, but large enough

that a general perturbations method is not used. In transitioning to trajectory design

in the CR3BP, a special perturbations method is used; however, the restricted 2BP

no longer provides a sufficient reference solution because the third body perturbations

are more significant at the super-GEO altitudes used for the trajectory design. This

motivates the inclusion of third body gravitational effects into the EOMs to formulate

the CR3BP dynamical environment that has no closed-form analytical solution. As

such, numerical integration, or special perturbations, is required, but the third body

effects are explicitly included in the reference solution. This is different from the

low-thrust cases that use a restricted 2BP reference solution that is integrable (not
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requiring numerical integration) when unperturbed.

For higher fidelity in modeling the gravity of the Earth, deviations from a spher-

ically symmetric gravity potential can be included. Rather than only including the

assumed Newtonian point mass potential, 𝑉 = −𝜇/𝑟, the Earth’s gravity potential

can be expanded in a complete summation of geopotential terms defined as

𝑉 = −𝜇
𝑟

∞∑︁
𝑛=0

𝑛∑︁
𝑚=0

(︂
𝑅⊕

𝑟

)︂𝑛

𝑃𝑚
𝑛 sin(𝛿)[𝐶𝑛𝑚cos(𝑚𝜆) + 𝑆𝑛𝑚sin(𝑚𝜆)] (27)

where 𝑅⊕ is the equatorial radius of the Earth, 𝜆 is the longitude and 𝛿 is the

latitude. The 𝑃𝑚
𝑛 terms are the associated Legendre polynomials, and the 𝐶𝑛𝑚 and

𝑆𝑛𝑚 coefficients are specific to the gravity model [18]. In the current investigation,

the oblateness of the Earth is only considered because it is the largest deviation in the

Earth’s actual geopotential from the Newtonian point mass potential. Any additional

terms are smaller in magnitude, but can be included to add fidelity to the model.

Physically, the Earth’s oblateness is the extra mass or “bulge” that exists at the

equator. In equation (27), the 𝐶20 coefficient accounts for the equatorial bulge and is

related to 𝐽2. 𝐽2 is the dimensionless parameter that is used when approximating the

oblateness effects in a special perturbations method [18]. In many sources, the term 𝐽2

is often synonymous with oblate Earth perturbative effects. Additional information

on perturbation theory and the expansion of the Earth’s geopotential can be found

in Wiesel [23].

In a simple understanding of the secular effects of 𝐽2 over time, the 𝐽2 perturbation

causes a regression of the right ascension of the ascending node and an advance of

perigee. This behavior is evident in the expressions in equation (28).
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Ω̇ = −
3𝑛𝐽2𝑅

2
⊕

2𝑎2(1− 𝑒2)2
cos(𝑖)

�̇� = −
3𝑛𝐽2𝑅

2
⊕

2𝑎2(1− 𝑒2)2

[︂
5

2
sin2(𝑖)− 2

]︂ (28)

In the expressions, 𝐽2 is equal to 0.001082 for the Earth. When using COEs and a

special perturbations method, it is straightforward to include the effects of 𝐽2 during

the numerical integration process. In Chapter 3, a similar approach is taken, but new

expressions are introduced for use with MEEs. The next section provides the theory

and derivations for a circular restricted three-body model.

2.2 The Three-Body Problem

After deriving the solution to the motion of two-bodies, it may seem that celestial

motion can be captured by simple and elegant solutions such as conics. In reality,

there are an “infinite” number of bodies in the universe all interacting gravitationally.

For applications in the vicinity of the Earth, the gravitational pull of the planets in

the solar system are either considered trivial or, for higher fidelity, modeled as a

“small” perturbing force. Even the gravitational pulls of the Sun and the Moon are

“small” for near-Earth applications. For trajectories above geosynchronous altitude

or GEO (approximately 35,786 km altitude), but within the vicinity of the Earth-

Moon system, it is not necessarily sufficient to only consider the gravitational pull

of the Earth with the Moon’s gravity modeled as a “small” perturbation. Doing

so would assume that the reference solution of a perturbed conic section is a “good

enough” initial guess for the motion of the spacecraft. At altitudes higher than GEO,

the Moon’s gravity begins to play a more important role for one to accurately describe

the motion of the satellite. As such, analytically incorporating the Moon’s gravity

into a higher-fidelity, multi-body dynamical model, as done in the CR3BP, provides

a more accurate initial guess of the spacecraft’s motion. The CR3BP presents a very
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complex and interesting problem as well as greater accuracy for super-GEO altitude

transfers and a much wider range of possible motion.

Two-body motion is considered to be virtually the only problem in celestial me-

chanics with a closed-form analytical solution [18]. Thus, increasing fidelity to a

three-body model is not a simple undertaking. However, techniques have been de-

veloped to gain insight into the problem and facilitate trajectory design in a circular

restricted three-body dynamical environment. A motivation for expending the effort

required to transition into a three-body model is the benefit of a vast design space that

boasts a wide range of possible motion. This affords the mission designer not only

greater quantitative accuracy at high altitudes but also greater freedom to explore

additional possible qualitative behavior for trajectory design.

2.2.1 The Circular Restricted Three-Body Problem

The following discussion attempts to introduce the CR3BP as well as useful design

tools, but it is not an extensive coverage. Szebehely’s seminal work, Theory of Orbits,

provides most of the foundation behind the following discussion and can also be

referenced for additional information on the CR3BP [24]. Other helpful references

include Roy [25] and Murray and Dermott [26].

In a similar fashion to the 2BP derivation, starting with Newton’s universal law

of gravitation is most convenient. Instead of assuming two bodies, now the law is

applied to three separate bodies where the objective is to describe the motion of the

third body. The resulting expression is given below

𝑚3𝑟3 = −𝐺𝑚3𝑚1

𝑟313
𝑟13 −

𝐺𝑚3𝑚2

𝑟323
𝑟23 (29)

where𝑚1 is the mass of the larger primary body,𝑚2 is the mass of the smaller primary

body, and 𝑚3 is the mass of the spacecraft. For this investigation, 𝑃1 is the position
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of the Earth, 𝑃2 is for the Moon, and 𝑃3 corresponds to the spacecraft. The position

vectors are defined such that the first subscript defines the base of the vector and the

second subscript defines the location of the head. For example, 𝑟12 points from 𝑃1 to

𝑃2. Equation (29) encompasses eighteen first-order differential equations. Since the

motion of 𝑃1 and 𝑃2 are coupled with the motion of 𝑃3, their motion, expressed in

the equations below, must also be solved for [24].

𝑚1𝑟1 = −𝐺𝑚1𝑚2

𝑟321
𝑟21 −

𝐺𝑚1𝑚3

𝑟331
𝑟31

𝑚2𝑟2 = −𝐺𝑚2𝑚1

𝑟312
𝑟12 −

𝐺𝑚2𝑚3

𝑟332
𝑟32

(30)

In terms of integrals of the motion, eighteen are required but only ten are available

from the inertial 𝑁 -body problem, thus, the system cannot be solved. As stated in the

previous section, there are ten known integrals of the motion in the 𝑁 -body problem.

Six integrals of the motion are from the conservation of system linear momentum,

three are from the conservation of system angular momentum, and the last one is

from the conservation of system mechanical energy [24]. Similarly to the restricted

2BP, the three-body problem can be simplified, though not solved, by making a few

assumptions as well as transitioning into a more convenient and insightful reference

frame.

The first step in simplifying the three-body system is to make a few assumptions.

As assumed in the restricted 2BP, the mass of the spacecraft is considered to be

significantly smaller than the masses of the primaries. Doing so means the motion of

the two primaries is unaffected by the mass of 𝑚3. This reduces the motion of the

primaries to the original two-body system in the previous section, or the two-body

problem. A final assumption is the motion of the primaries is circular about their

system barycenter [24]. If viewing from the center of either of the primary bodies, the

motion of the other primary is circular as well. This assumption, while not necessary,
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Figure 6. Three-body system in inertial reference frame

simplifies the analysis of the problem. Collectively making these assumptions reduced

the general three-body problem into the CR3BP.

Modeling the CR3BP in a rotating, or synodic, reference frame has been found

to admit an integral of the motion. The rotating frame, 𝑅, in this investigation is

denoted by �̂�, 𝑦 and 𝑧. The origin of the frame is set at the barycenter, 𝐵, of the

primaries. The �̂� direction points through the positions of the primaries from 𝑃1 to

𝑃2. 𝑦 is orthogonal to �̂� in the plane of the primaries. Lastly, 𝑧 is aligned with the

angular momentum vector of the primaries. It is important to note that the motion of

the primaries is planar in the synodic frame, but 𝑃3 is generally free to move spatially.

Yet, in this investigation, only planar 𝑃3 motion is investigated.

Since the CR3BP does not have a known closed-form analytical solution, numeri-

cal methods are typically used. To improve numerical performance as well as provide

additional quantitative intuition, the problem is nondimensionalized. The character-

istic parameters for the nondimensionalization are defined in Table 3.
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Table 3. Characteristic quantities for the CR3BP

Symbol Unit Definition Dimensional Value

𝑙* Length Distance between the primaries 384, 400 km

𝑚* Mass Total system mass, 𝑚1 +𝑚2 6.046 · 1024 kg

𝑡* Time
√︁

𝑙*3

𝐺𝑚* 4.342 days

The characteristic time, 𝑡*, is defined such that the nondimensional gravitational

parameter, 𝜇, and the nondimensional mean motion of the primaries, 𝑛, are conve-

niently equal to 1. 𝑡* is also equal to the time it takes the rotating frame of the

primaries to sweep through 1 radian, resulting in a period of the primaries that is 2𝜋.

To nondimensionalize a dimensional parameter, one divides by the appropriate char-

acteristic quantity. For example, if a distance 𝐿 is given in kilometers, the equivalent

nondimensional distance is 𝐿𝑛𝑑 = 𝐿
𝑙*
. The inverse of the previous operation can be

conducted to transform from nondimensional units to dimensional units as long as

the appropriate characteristic quantities are applied.

The rotation angle, 𝜃, about the 𝑍 axis defines the rotation angle to transform

from barycentric inertial coordinates to barycentric rotating coordinates and is equal

to 𝜃 = 𝑛𝜏 where 𝜏 is nondimensional time [4]. Since 𝑛 is equal to 1 nondimensionally,

then 𝜃 = 1, where the time derivative is with respect to nondimensional time 𝜏 . The

positions of the primaries are defined in terms of the system mass ratio, 𝜇 = 𝑚2

𝑚1+𝑚2
,

which for the Earth-Moon system equals 0.0121505865505687. A special note is that

this definition of 𝜇 in the CR3BP varies depending on the author and is also different

from the gravitational parameter in the 2BP.

To define the motion of the spacecraft (𝑃3), the EOMs of interest are those that

govern the vector 𝜌 depicted in Figure 7. A derivation of the EOMs in rotating

barycentric coordinates is presented in Szebehely [24] and Murray and Dermott [26].
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𝒁�, 𝒛� 
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𝑃1(𝑚1) 

𝑃2(𝑚2) 

𝒅 

𝝆 

𝒓 

𝑃3(𝑚3) 

𝑥 = −𝜇  

𝒀� 

𝑥 = 1 − 𝜇  

𝜃 = 𝑛𝑛 

𝜇 =
𝑚2

𝑚1 + 𝑚2
  

𝑛 = 1 

Figure 7. Barycentric rotating reference frame, adapted from Stuart [3]

The same end result can be achieved by first rewriting equation (29) in nondimensional

units and in terms of the parameters in Figure 7 with respect to an inertial reference

frame centered on 𝐵. The resulting second-order nondimensional vector ordinary

differential equation is

𝜌 = −(1− 𝜇)

𝑑3
𝑑− 𝜇

𝑟3
𝑟 (31)

where �̈� is the acceleration of 𝜌 with respect to nondimensional time and the inertial

reference frame centered on 𝐵. Since 𝑑 and 𝑟 can easily be written in inertial or

rotating coordinates, the remaining step is to express the left side of equation (31)

in rotating barycentric coordinates, 𝑥, 𝑦, and 𝑧. To do this, the transport theorem

must be applied twice on 𝜌 = 𝑥�̂� + 𝑦𝑦 + 𝑧𝑧. The transport theorem provides the

necessary relationship to take derivatives when using multiple reference frames. The

relationship is
𝐼𝑑
𝑑𝑡
[] =

𝑅𝑑
𝑑𝑡
[] + 𝜔𝑅𝐼 × [], where the superscripts 𝐼 and 𝑅 signify the

reference frame and 𝜔𝑅𝐼 is the angular velocity vector of the 𝑅 frame with respect
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to the 𝐼 frame. Applying the transport theorem twice on 𝜌 results in the equation

below.

𝜌 = (�̈�− 2�̇� − 𝑥)�̂�+ (𝑦 + 2�̇�− 𝑦)𝑦 + 𝑧𝑧 (32)

Even though the system is written in barycentric rotating frame coordinates, the

derivatives are still taken with respect to an inertial reference frame. That is, the dy-

namics or described motion are still consistent with what would be seen by an inertial

observer, but expressed in non-inertial coordinates. Setting equation (32) equal to

equation (31) yields a system of three scalar second-order nondimensional ordinary

differential equations describing the motion of 𝑃3 under the gravitational influence

of the two primaries. The resulting scalar equations after a minor rearrangement of

terms are

�̈� = 𝑥+ 2�̇� − (1− 𝜇)(𝑥+ 𝜇)

𝑑3
− 𝜇(𝑥− 1 + 𝜇)

𝑟3
(33a)

𝑦 = 𝑦 − 2�̇�− 𝑦(1− 𝜇)

𝑑3
− 𝜇𝑦

𝑟3
(33b)

𝑧 = −𝑧(1− 𝜇)

𝑑3
− 𝜇𝑧

𝑟3
(33c)

where 𝑑 =
√︀
(𝑥+ 𝜇)2 + 𝑦2 + 𝑧2 and 𝑟 =

√︀
(𝑥− 1 + 𝜇)2 + 𝑦2 + 𝑧2. Since the current

investigation focuses on planar motion in the CR3BP, to isolate motion to the 𝑥-𝑦

plane, set 𝑧 equal to zero. Notice time does not explicitly appear in the CR3BP EOMs;

this is because the system is time-invariant. That is, a solution in the CR3BP is

independent of time and valid for any other equivalent time span that it encompasses

[4]. Lastly, the system of differential equations is highly nonlinear, coupled, and does

not currently have a known closed-form analytical solution. In applying the CR3BP

EOMs, it is useful to define a “pseudo potential” that expresses the new gravity
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potential in this model [27].

𝑈* =
1− 𝜇

𝑑
+
𝜇

𝑟
+
𝑥2 + 𝑦2

2
(34)

The EOMs can now be rewritten in more concise notation below.

�̈�− 2�̇� = 𝑈*
𝑥 (35a)

𝑦 + 2�̇� = 𝑈*
𝑦 (35b)

𝑧 = 𝑈*
𝑧 (35c)

It is often helpful to transform back to an Earth-centered inertial frame to gain a

different perspective on a designed trajectory or particular orbit. The transformation

between the barycentric rotating frame and the 𝑃1 centered inertial frame is given by

the equations below [4].

𝑋 = (𝑥+ 𝜇)cos(𝜃)− 𝑦sin(𝜃) (36a)

𝑌 = (𝑥+ 𝜇)sin(𝜃) + 𝑦cos(𝜃) (36b)

𝑍 = 𝑧 (36c)

�̇� = −(𝑥+ 𝜇)sin(𝜃)− 𝑦cos(𝜃) + �̇�cos(𝜃)− �̇�sin(𝜃) (36d)

�̇� = (𝑥+ 𝜇)cos(𝜃)− 𝑦sin(𝜃) + �̇�sin(𝜃)− �̇�cos(𝜃) (36e)

�̇� = �̇� (36f)

The next section expands upon the CR3BP by providing useful insight necessary

for the trajectory design process.
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2.2.2 Insight into the CR3BP

An important aspect of the CR3BP is that there exists regions of the phase space

where the solutions are sensitive to small changes in the initial conditions. In modern

nomenclature, this quality is termed deterministic chaos [28]. Due to the existence of

chaotic behavior, vastly different qualitative behaviors can exist in close proximity.

This fact provides an exciting yet exceedingly challenging design environment. A

useful result of deriving the system in rotating coordinates is the existence of an

integral of the motion. In 1836, the German mathematician Carl Jacobi discovered

the “integral of relative energy” or the Jacobi constant, 𝐶 [26,29]. The Jacobi constant

is an energy integral and, although it is not the total system mechanical energy, it

is an “energy-like” quantity [18]. The Jacobi constant is a function of position and

velocity and is given by

𝐶 = 𝑥2 + 𝑦2 +
2(1− 𝜇)

𝑑
+

2𝜇

𝑟
− 𝑉 2 (37a)

𝐶 = 2𝑈* − 𝑉 2 (37b)

where 𝑉 =
√︀
�̇�2 + �̇�2 + �̇�2. Wiesel provides an apt interpretation of the Jacobi inte-

gral when it is transformed back into inertial position and velocity components when

he states, “the resulting expression resembles a combination of the total energy of

the third mass and its total angular momentum” [18]. It is important to note that

authors define 𝐶 differently, thus, attention is needed when referencing other works.

Given the discovery of the Jacobi constant, George William Hill defined accessible re-

gions at particular energy levels in 1878 [24]. The boundaries of the accessible regions

are provided by zero-velocity curves (ZVCs) or, in spatial dimensions, zero-velocity

surfaces. When the relative velocity of the system is set to zero for a particular Jacobi
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constant value, equation (37b) reduces to

𝐶 = 2𝑈* (38)

The set of coordinates that satisfies equation (38) defines the ZVCs. Regions vio-

lating the ZVCs are not physically realizable because they correspond to imaginary

magnitudes of relative velocity [25]. The formulation for 𝐶 used in this investigation

implies that a decrease in 𝐶 corresponds to an increase in the “energy” level of the

spacecraft. The opposite is also true. Changing the 𝐶 value and examining the ZVCs

shows an evolution of the accessible regions. In discussion about accessible regions,

forbidden regions correspond to 𝑉 2 < 0, and accessible regions are defined by 𝑉 2 > 0.

A similar yet important note is that an exterior region describes an accessible region

that is separated from an interior region by a shaded forbidden region. That is, for

a spacecraft starting in an interior region at a certain 𝐶, there may be physically

realizable (unshaded) regions that the spacecraft cannot be reach due to a closed

boundary of ZVCs. This also means the same spacecraft at the same energy level

starting in the exterior region would not be able to access the interior region. Figure

9 shows the ZVCs corresponding to the value of Jacobi constant associated with each

of the CR3BP equilibrium points.

As just hinted, the CR3BP has five equilibrium solutions known as Lagrange

points or libration points [24]. The Lagrange points correspond to coordinates where

the relative velocity and acceleration are zero or 𝑈*
𝑥 = 𝑈*

𝑦 = 𝑈*
𝑧 = 0 [27, 29]. The

three Lagrange points that lie on the 𝑥-axis are known as the collinear points and were

discovered by Leonhard Euler in 1765 [4, 18]. The remaining two, found in 1836 by

Joseph-Louis Lagrange, form equilateral triangles with the primaries and are known

as the triangular points [18, 24]. Figure 8 shows the locations of the Earth-Moon

equilibrium points in the nondimensional barycentric rotating frame. The locations
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in nondimensional units (nd) of the five Earth-Moon libration points as well as their

corresponding Jacobi constants are given in Table 4.

L4

L5

L1 L2L3

Earth Moon

x (nd)

y 
(n

d)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 8. Earth-Moon equilibrium points in the nondimensional barycentric rotating
frame

Table 4. CR3BP Earth-Moon Lagrange points

L-point x (nd) y (nd) z (nd) C

L1 0.836915121142417 0 0 3.18834112642610

L2 1.15568216906384 0 0 3.17216046839511

L3 -1.00506264620231 0 0 3.01214715162089

L4 0.487849413449431 0.866025403784439 0 2.98799705020295

L5 0.487849413449431 -0.866025403784439 0 2.98799705020295

The numbering of the Lagrange points can vary depending on the source. For

this investigation, the cislunar Lagrange point is L1, where cislunar defines the body
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of space between the Earth and the Moon. The translunar, or “beyond the Moon”

point, is labeled L2, and the trans-Earth, “beyond the Earth”, point is L3. L4 is the

leading equilateral point whereas L5 is the trailing equilateral point.
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(a) L1 associated ZVCs
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(b) L2 associated ZVCs

L4

L5

L1 L2L3
Earth Moon

x (nd)

y 
(n

d)

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Forbidden Region

(c) L3 associated ZVCs
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(d) L4 and L5 associated ZVCs

Figure 9. Lagrange point associated zero-velocity curves

Figure 9 shows the ZVCs associated with each of the Lagrange Points where the

gray regions are forbidden at the specified energy level. The ZVCs in Figure 9(a) are

associated with the energy level of L1 and show that the “L1 gateway” is almost open.
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In Figure 9(b), that same gateway is much wider due to a lower 𝐶 value or higher

energy associated with L2. Decreasing 𝐶 and increasing the energy level to that of

L3 is depicted in Figure 9(c) with the L1 and L2 gateways open and the L3 gateway

at the cusp of allowing passage [27]. Finally, at the energy levels associated with L4

and L5 shown in Figure 9(d), the ZVCs are just leaving the 𝑥-𝑦 plane and only exist

as points at L4 and L5. In leaving the plane at this “energy” level, there are still

zero-velocity surfaces that bound the out-of-plane motion; however, the zero-velocity

surfaces exist at only two points, L4 and L5 in the 𝑥-𝑦 plane. Therefore, at this 𝐶

value, planar motion is nearly unbounded. Increasing the “energy” level from that of

L4 and L5 would cause the zero-velocity surfaces to depart from the 𝑥-𝑦 plane and

continue to increase in out-of-plane separation.

As a final note, an added benefit to having an integral of the motion is that

numerical integration error accumulation can be checked by monitoring the change

in 𝐶. In the CR3BP, rapid error accumulation may occur when motion is close to a

primary body. Figures 10 and 11 give an example of Jacobi constant error tracking

for sensitive and less sensitive motion, where “sensitive” implies more error. For a

given trajectory, seeing only very small variations in the Jacobi constant allows the

user to trust the numerically propagated results and acquire a sense of the level of

error accumulation. In the current investigation, checking the change in 𝐶 is used

as a means of verifying numerically generated results when designing in the CR3BP.

The next section introduces equations of variation as a way to gain insight into the

dynamical behavior nearby a particular trajectory.

2.2.3 Equations of Variation

The equations of variation (EOVs) provide a tool for gaining information about

neighboring trajectories to a particular reference trajectory. This is exceedingly rel-
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Figure 10. Example spacecraft trajectory propagated for 13.64 days in barycentric
rotating frame with associated ZVCs
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Figure 11. Change in Jacobi constant for the example spacecraft trajectory in the first
200 seconds and the entire 13.64 day propagation time
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evant for systems or models where the EOMs must be numerically integrated. In

many spacecraft trajectory design applications, this approach is taken when special

perturbations are involved. In the CR3BP, due to the lack of a closed-form analytical

solution, numerical methods are necessitated and the EOVs become a very useful

design tool. Using a first-order Taylor series expansion and perturbing a reference

trajectory by small variations yields the linear variational EOMs

𝜉 − 2�̇� = 𝑈*
𝑥𝑥𝜉 + 𝑈*

𝑥𝑦𝜂 + 𝑈*
𝑥𝑧𝜁 (39a)

𝜂 + 2𝜉 = 𝑈*
𝑥𝑦𝜉 + 𝑈*

𝑦𝑦𝜂 + 𝑈*
𝑦𝑧𝜁 (39b)

𝜁 = 𝑈*
𝑥𝑥𝜉 + 𝑈*

𝑦𝑧𝜂 + 𝑈*
𝑧𝑧𝜁 (39c)

where 𝜉, 𝜂, and 𝜁 are perturbations in the 𝑥, 𝑦, and 𝑧 directions respectively [27]. It is

important to note that these equations are linear and are attempting to approximate

the behavior of solutions in the vicinity of a reference trajectory. Since the dynamical

environment is, in general, highly nonlinear, care must be taken to ensure that the

variations and time spans used are reasonably small [27]. The variational EOMs can

be written in state space form as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜉

�̇�

𝜁

𝜉

𝜂

𝜁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝐴(𝑡)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜉

𝜂

𝜁

𝜉

�̇�

𝜁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(40)
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where 𝐴(𝑡) is a 6× 6 matrix with the form

𝐴(𝑡) =

⎡⎢⎣ 03×3 𝐼3×3

𝐵 Ω

⎤⎥⎦ (41)

with the elements 𝐵 and Ω defined as follows

𝐵 =

⎡⎢⎢⎢⎢⎣
𝑈*
𝑥𝑥 𝑈*

𝑥𝑦 𝑈*
𝑥𝑧

𝑈*
𝑥𝑦 𝑈*

𝑦𝑦 𝑈*
𝑦𝑧

𝑈*
𝑥𝑧 𝑈*

𝑦𝑧 𝑈*
𝑧𝑧

⎤⎥⎥⎥⎥⎦ (42)

Ω =

⎡⎢⎢⎢⎢⎣
0 2 0

−2 0 0

0 0 0

⎤⎥⎥⎥⎥⎦ (43)

Introducing the 𝐴 matrix is necessary to be able to characterize how a variation

in the initial conditions of the reference trajectory impacts the state at the final time.

The general solution to equation (40) is written below and answers that very question.

𝛿𝑥(𝑡) = Φ(𝑡, 𝑡0)𝛿𝑥(𝑡0) (44)

In equation (44), a variation in the initial conditions can be premultiplied by the

state transition matrix (STM), Φ, to linearly approximate the variation in the state

at a future time [23]. The STM is governed by the following equation

Φ̇(𝑡, 𝑡0) = 𝐴(𝑡)Φ(𝑡, 𝑡0) (45)

with the initial conditions

Φ(𝑡0, 𝑡0) = 𝐼 (46)
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where 𝐼 is the 6×6 identity matrix. Numerically integrating the STM using equation

(45) along with the EOMs allows for information about the neighboring solutions to

be propagated as well. In the spatial CR3BP, the STM is a 6× 6 matrix defined by

the partial derivative of the current state with respect to the initial state.

Φ =
𝜕𝑥

𝜕𝑥0

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑥
𝜕𝑥0

𝜕𝑥
𝜕𝑦0

𝜕𝑥
𝜕𝑧0

𝜕𝑥
𝜕�̇�0

𝜕𝑥
𝜕�̇�0

𝜕𝑥
𝜕�̇�0

𝜕𝑦
𝜕𝑥0

𝜕𝑦
𝜕𝑦0

𝜕𝑦
𝜕𝑧0

𝜕𝑦
𝜕�̇�0

𝜕𝑦
𝜕�̇�0

𝜕𝑦
𝜕�̇�0

𝜕𝑧
𝜕𝑥0

𝜕𝑧
𝜕𝑦0

𝜕𝑧
𝜕𝑧0

𝜕𝑧
𝜕�̇�0

𝜕𝑧
𝜕�̇�0

𝜕𝑧
𝜕�̇�0

𝜕�̇�
𝜕𝑥0

𝜕�̇�
𝜕𝑦0

𝜕�̇�
𝜕𝑧0

𝜕�̇�
𝜕�̇�0

𝜕�̇�
𝜕�̇�0

𝜕�̇�
𝜕�̇�0

𝜕�̇�
𝜕𝑥0

𝜕�̇�
𝜕𝑦0

𝜕�̇�
𝜕𝑧0

𝜕�̇�
𝜕�̇�0

𝜕�̇�
𝜕�̇�0

𝜕�̇�
𝜕�̇�0

𝜕�̇�
𝜕𝑥0

𝜕�̇�
𝜕𝑦0

𝜕�̇�
𝜕𝑧0

𝜕�̇�
𝜕�̇�0

𝜕�̇�
𝜕�̇�0

𝜕�̇�
𝜕�̇�0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(47)

An important feature of the STM in the CR3BP is that its determinant is equal

to unity. By Liouville’s theorem, this means the dynamical “flow” of the system is

incompressible [27, 30]. Another explanation is that the “volume” occupied in the

phase space by a trajectory is preserved [4]. This property has numerical benefits in

that the determinant of the STM can be used to measure numerical integration error.

Another benefit of the STM is that it holds information regarding the sensitivity of

the reference trajectory to changes in the initial conditions. In other words, it can be

an effective gauge on how chaotic the current operating region is. More importantly,

the EOVs can be exploited to target trajectories and solve TPBVPs in the CR3BP.

Targeting via differential corrections is discussed in the next section.

2.2.4 Targeting Trajectories

When a continuous trajectory between two states is desired, differential corrections

based on the Newton-Raphson method can be used target a precise solution. In

the context of the CR3BP, a two-point boundary value problem (TPBVP) is often
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formulated such that the initial state conditions or times of flight are solved in order

to target a desired final state. A TPBVP seeks a solution to the system’s EOMs given

specified starting and end conditions. It is worth noting that this section introduces

optimization concepts that are further detailed in Section 2.3. Also, the targeting

scheme being introduced does not aim at finding the optimal solution to a TPBVP,

but a feasible solution if one exists. In general, a set of 𝑛 design variables must be

defined in the free-variable array 𝑋.

𝑋 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋1

𝑋2

𝑋3

...

𝑋𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(48)

Given the design variables, the objective is to drive a set of 𝑚 equality constraints,

𝐹 (𝑋), to zero within a satisfactory tolerance.

𝐹 (𝑋) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐹1(𝑋)

𝐹2(𝑋)

𝐹3(𝑋)

...

𝐹𝑚(𝑋)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0 (49)

To implement inequality constraints into 𝐹 (𝑋), slack variables can be added to

the constraints and included as design parameters. The corrections procedure needs

to be initialized with a first guess, 𝑋0. A guess-and-check method or conic approx-

imation can be used in the CR3BP for less chaotic regions or near-Earth segments

to provide the initial conditions. However, PSO is a tempting and viable method to
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supply the initial guess in this investigation. Given 𝑋0, a first-order Taylor series

expansion is used to approximate a small change from the reference trajectory 𝑋0.

𝐹 (𝑋) ≈ 𝐹 (𝑋0) +𝐷𝐹 (𝑋0)(𝑋 −𝑋0) +𝐻.𝑂.𝑇 (50)

The higher order terms (𝐻.𝑂.𝑇 ) are dropped resulting in a linear approximation. In

order to update the initial states at every iteration, the Jacobian matrix, 𝐷𝐹 (𝑋), is

needed. The 𝑚× 𝑛 Jacobian matrix is defined below.

𝐷𝐹 (𝑋) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝐹1

𝜕𝑋1

𝜕𝐹1

𝜕𝑋2
· · · 𝜕𝐹1

𝜕𝑋𝑛

𝜕𝐹2

𝜕𝑋1

𝜕𝐹2

𝜕𝑋2
· · · 𝜕𝐹2

𝜕𝑋𝑛

...
...

. . .
...

𝜕𝐹𝑚

𝜕𝑋1

𝜕𝐹𝑚

𝜕𝑋2
· · · 𝜕𝐹𝑚

𝜕𝑋𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(51)

It is worth noting that, depending on the constraints, elements that populate

the 𝐷𝐹 (𝑋) may be found in the STM in equation (47). If the number of 𝑛 design

variables equals the number of 𝑚 constraints, then the 𝐷𝐹 (𝑋) matrix is square and

invertible. By the implicit function theorem, this implies that if a local solution exists,

it is unique [31]. To iteratively drive the constraint array, 𝐹 (𝑋), to zero, an update

equation is used.

𝑋 𝑖+1 =𝑋 𝑖 −𝐷𝐹 (𝑋 𝑖)
−1𝐹 (𝑋 𝑖) (52)

Convergence conditions are met once the error, ‖𝐹 (𝑋 𝑖)‖ < 𝜖 where 𝜖 is the

convergence tolerance. When 𝑛 > 𝑚, the TPBVP has infinitely many solutions. A

common practice is to choose the next guess closest to the previous guess via the

minimum-norm. This approach uses the pseudo-inverse of 𝐷𝐹 (𝑋) in the update

equation below
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𝑋 𝑖+1 =𝑋 𝑖 −𝐷𝐹 (𝑋 𝑖)
𝑇
[︀
𝐷𝐹 (𝑋 𝑖)𝐷𝐹 (𝑋 𝑖)

𝑇
]︀−1

𝐹 (𝑋 𝑖) (53)

where the superscript 𝑇 denotes a matrix transpose. Convergence for a differential

corrections scheme using the Newton-Raphson is quadratic; however, this depends on

the proximity of the initial guess to the actual solution [32]. This general corrections

scheme allows the designer to target orbits and trajectories in the CR3BP. Also, this

method of targeting is a popular tool to solve a variety of TPBVPs in the CR3BP

[3,4,33,34]. As is shown in Chapter 4, it can even be used to target periodic solutions.

The next section seeks to characterize the dynamics in the vicinity of the equilibrium

points in the CR3BP.

2.2.5 Stability of the Equilibrium Points

Analyzing the stability of the equilibrium points, or Lagrange points, in the

CR3BP provides information about the dynamical motion in the vicinity of the points

themselves. A relevant question is: will a spacecraft in the vicinity of a specific La-

grange point remain near the point or depart as time progresses? Answering this

question not only tells the designer how expensive long-term missions near the La-

grange points will cost in terms of station-keeping but also sets the stage for a more

complete analysis of the dynamical “flow” near the equilibrium solution using dy-

namical systems theory.

From Lyapunov stability analysis, a solution to the equation �̇� = 𝑓(𝑥, 𝑡), denoted

𝜓(𝑡), is Lyapunov stable if given any 𝜖 > 0, there exists a 𝛿 > 0 such that any solution

of 𝜑(𝑡) satisfying

|𝜑(𝑡0)− 𝜓(𝑡0)| < 𝛿 (54)
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for time 𝑡 ≥ 𝑡0 satisfies

|𝜑(𝑡)− 𝜓(𝑡)| < 𝜖 (55)

To be considered asymptotically stable, the solution 𝜑(𝑡) must approach 𝜓(𝑡) as

𝑡 → ∞. The CR3BP libration points are solutions, 𝜓(𝑡), to the system EOMs, thus,

characterizing their respective stability provides information about motion in their

vicinity. At the equilibrium points, the 𝐴 matrix in equation (41) is constant, with

six constant eigenvalues, 𝜆𝑛, for 𝑛 = 1, 2, ...6. In a linear system, examining the real

parts of the eigenvalues yields Lyapunov stability information based on the following

rule set:

∙ Complex Eigenvalues: If all the roots have negative real parts, the equilibrium

point is asymptotically stable. If one or more of the complex roots has a positive

real part, then the equilibrium point is unstable.

∙ Pure Imaginary Eigenvalues: For an equilibrium point with all pure imaginary

roots, the linear stability is marginally stable. The same is true for an equilib-

rium point with some pure imaginary roots and with only negative real parts

for any remaining eigenvalues.

∙ Real Eigenvalues: If the eigenvalues are negative, the equilibrium point is

asymptotically stable. Conversely, if any root has a positive real portion, the

equilibrium point is unstable.

Any marginally stable characterizations of the equilibrium point cannot be ex-

tended to the nonlinear model. Asymptotically stable and unstable characterizations

of the equilibrium point do not share the same restriction and can be extended to the

nonlinear system. A nuance not captured in the rule set is that a system with only

zero valued eigenvalues is characterized by unstable behavior. Evaluating the CR3BP

49



libration points for Lyapunov stability results in the collinear points exhibiting stable,

unstable, and marginally stable modes. Since this investigation focuses on the planar

CR3BP, the collinear points can be characterized as 2-D saddle × 2-D centers in the

𝑥-𝑦 plane. The 2-D saddle consists of a 1-D unstable mode and a 1-D stable mode.

The 2-D center corresponds to a two-dimensional center subspace. A center subspace

is characterized by oscillatory, marginally stable motion. The triangular points, due

to purely imaginary roots, are marginally stable, or 2-D center × 2-D center × 2-D

centers spatially or 2-D center × 2-D centers in the planar Earth-Moon CR3BP. The

characterization of the triangular points depends on the system 𝜇 value. For 𝜇 val-

ues greater than a critical value of 0.03852, the triangular points are unstable [24].

The Earth-Moon 𝜇 value is less than the critical 𝜇 value, thus, the triangular points

exhibit marginally stable behavior. Again, conclusions about the nonlinear behavior

of the motion near the triangular points cannot be made based on the linear stabil-

ity analysis. Figure 12 gives a notional depiction of the 2-D saddle and 2-D center

subspaces for one of the collinear Lagrange points.

2-D Saddle 

Equilibrium 
Point 

2-D Center 

Figure 12. Notional diagram of a 2-D saddle × 2-D center equilibrium point, adapted
from Geisel [4]

50



The figure shows that the motion in the center subspace is bounded and oscilla-

tory. The 1-D unstable subspace departs the equilibrium point and the 1-D stable

subspace approaches the equilibrium point. Together, the 1-D stable and 1-D unsta-

ble subspaces make up a 2-D saddle. The next section expands the stability analysis

to periodic orbits by introducing dynamical systems theory.

2.2.6 Dynamical Systems Theory

Dynamical systems theory is used in the present investigation to gain a visual-

ization of the “flow” of the dynamics through the use of invariant manifolds. The

dynamical systems theory presented in this section is based on the works of Parker

and Chua, Guckenheimer and Holmes, and Wiggins [31, 35,36].

Prior to generating the invariant manifolds, a stability analysis of the periodic

solutions must first be made. A periodic solution, in this context, means that after a

finite amount of time, the spacecraft, given an initial condition, returns to the same

initial condition in both position and velocity within a certain tolerance. The stability

analysis of the motion near a periodic solution does not follow the same rule set

used when evaluating the stability of equilibrium points. A different approach using

Floquet theory is employed in order to gain similar information. Given a periodic

solution in the CR3BP, the 𝐴 matrix is no longer constant as is the case for the

equilibrium points, but consists of time-varying periodic terms [27]. Choosing a fixed

point along the periodic orbit and generating the monodromy matrix from the STM

is the first step. The monodromy matrix is equal to the STM of the periodic orbit

after exactly one period, 𝑡𝑝, has elapsed. Floquet theory states that the monodromy

matrix can be written in terms of a periodic function, 𝐹 (𝑡), and Jordan normal form

matrix 𝐽 such that

Φ(𝑡𝑝, 𝑡0) = 𝐹 (𝑡0)𝑒
𝐽𝑡𝑝𝐹−1(𝑡0) (56)
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where 𝐹 (𝑡𝑝) consists of the eigenvectors of the monodromy matrix and 𝐹 (𝑡𝑝) = 𝐹 (𝑡0)

[23, 27]. The matrix 𝐽 is usually a diagonal matrix where the diagonal elements,

𝜔𝑖, are termed the Poincaré exponents. The eigenvalues of the monodromy matrix,

called the characteristic multipliers, 𝜆𝑖, are related to Poincaré exponents via the

simple expression below.

𝜆𝑖 = 𝑒𝜔𝑖𝑡𝑝 (57)

The monodromy matrix is easily computed by numerically propagating the STM

for a full cycle using equation (45). The STM is propagated along the with spacecraft

state itself when numerically integrating the CR3BP EOMs in equations (33). From

Floquet theory, evaluating the eigenvalues of the monodromy matrix provides the

necessary information regarding the stability of a periodic orbit. The rule set for this

set of eigenvalues is as follows:

∙ If any eigenvalue of the monodromy matrix lies outside the unit circle, the

periodic orbit is unstable.

∙ If an eigenvalue of the monodromy matrix lies within the unit circle, the motion

along the associated eigenvector is asymptotically stable.

∙ If an eigenvalue of the monodromy matrix lies on the unit circle, the motion

along the associated eigenvector is marginally stable.

Using this linear stability analysis, asymptotically stable and unstable characteriza-

tions of the orbit extend to the nonlinear model, but the same extension cannot be

made for marginally stable characterizations of the periodic solution. In the CR3BP,

all eigenvalues of the monodromy matrix appear as conjugate pairs, thus, for a peri-

odic orbit to be marginally stable, all of the eigenvalues must lie on the unit circle [3].
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Due to the monodromy matrix stemming from a periodic orbit, one of the conjugate

pairs must be of unity real value [35]. This implies that a periodic solution cannot

be asymptotically stable due to the requirement that all of the eigenvalues be within

the unit circle. Expanding this reasoning, if one of the eigenvalues does lie within the

unit circle, then the conjugate eigenvalue must exist outside of the unit circle. This

conjugate pair corresponds to a 2-D saddle emanating from any fixed point along the

periodic orbit. Also, conjugate eigenvalues that exist on the unit circle create 2-D

center subspaces emanating from a fixed point along the periodic orbit.

The instability of a periodic orbit is not necessarily an undesirable quality. As is

shown, this allows for trajectories to asymptotically approach the unstable periodic

orbit. However, once approximately “on” the unstable periodic orbit, station-keeping

must be conducted due to the instability drifting. Conversely, marginally stable pe-

riodic orbits do not have invariant manifold tubes asymptotically approaching them,

therefore, getting to them may be more expensive in terms of fuel. However, this

means that staying “on” the marginally stable periodic orbit may be easier due to

the decreased level of station-keeping required.

To calculate the eigenvalues along the periodic orbit, it is possible to exploit

the periodicity of the solution [3]. For the periodic solution, the eigenvalues of the

monodromy matrix are independent of the starting point and can be easily extracted

after propagating the STM for a full cycle. For the eigenvectors of the monodromy

matrix, it has been shown that they are not independent of the starting point and

need to be transitioned from the start point to the desired point via the STM using

the expression

𝐸𝑖(𝑡) = Φ(𝑡, 𝑡0)𝐸𝑖(𝑡0) (58)

where 𝐸𝑖(𝑡) is the eigenvector corresponding to the 𝑖th eigenvalue at time 𝑡 [27]. In

the spatial six-dimensional phase space, there are six eigenvalues corresponding to
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each point along the periodic orbit; there are four eigenvalues in the planar problem.

Applying equation (58), the stable and unstable eigenvectors at 20 points along a

periodic orbit about the Earth-Moon L1 point are shown in Figure 13.
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Figure 13. Periodic orbit in the vicinity of L1 with associated stable and unstable
eigenvectors and ZVCs in nondimensional rotating barycentric frame

In the figure, the stable eigenvector directions are green and denoted 𝐸𝑠, and

the unstable eigenvector directions are red and denoted 𝐸𝑢. The negative signs are

used to specify which direction along the eigenvector is being used. The gray region

shows the forbidden region corresponding to the value of the Jacobi constant of the

blue periodic orbit. The black arrowheads indicate the direction of motion of the

spacecraft moving along the periodic orbit.

Propagating a spacecraft along the eigenvector directions corresponding to the
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2-D saddle subspace results in asymptotic behavior. For the unstable directions,

the spacecraft tends to depart the periodic orbit in positive time whereas the space-

craft asymptotically approaches in the stable eigenvalue directions. If attempting

to approach the periodic orbit, the spacecraft should approach on a stable manifold

trajectory. To propagate the manifold trajectories emanating from the periodic orbit

eigenvectors, a displacement value 𝑑 is implemented so that propagation does not

take prohibitively long to depart or approach the libration point orbit (LPO). Even

if the computer is fast enough to overcome the asymptotic behavior near the periodic

orbit given a very small 𝑑, numerical integration error tends to accumulate for longer

integration times. Choosing an appropriate 𝑑 value is not as simple as arbitrarily

picking a large number either. If the 𝑑 value is too large, then the propagated trajec-

tory may not be a “good enough” approximation for the stable or unstable manifold

trajectory. In this investigation, stepping off using a dimensional displacement of 50

km is acceptable for the Earth-Moon system [4]. The displacement is not applied in

just position, but is also applied to the velocity. This is done by first normalizing the

eigenvectors (in position only) using the equation below

�̂� =
𝐸√︀

𝑥2𝐸 + 𝑦2𝐸 + 𝑧2𝐸
(59)

where 𝑥𝐸, 𝑦𝐸, and 𝑧𝐸 are the position components of the eigenvector 𝐸. After

normalizing, the displacement is applied to compute the initial conditions for the

approximate manifold trajectories via the expressions below

𝑋𝑠(𝑡0) =𝑋(𝑡)± 𝑑�̂�
𝑠
(𝑡)

𝑋𝑢(𝑡0) =𝑋(𝑡)± 𝑑�̂�
𝑢
(𝑡)

(60)

where 𝑋𝑠(𝑡0) is the initial position to propagate along the stable subspace, 𝑋𝑢(𝑡0) is
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the initial position to propagate in the unstable direction, �̂�
𝑠
is the stable eigenvector

emanating from the period orbit at time 𝑡 along the orbit, and �̂�
𝑢
is the unstable

eigenvector. Propagating in the stable direction must occur in negative time in order

to depart the periodic orbit. Conversely, the unstable manifold directions require a

propagation in forward time. When trajectories emanating from a collection of points

along the periodic orbit are propagated, a manifold “tube” appears which serves as

a geometric representation of the dynamical “flow” asymptotically approaching and

departing the unstable periodic orbit. The stable and unstable and stable manifold

tubes emanating from the same periodic orbit near L1 in Figure 13 are shown in

Figure 14. As denoted by the directions of motion in Figure 14, the stable mani-

fold trajectories approach the periodic orbit, and the unstable manifold trajectories

depart. Four manifold tubes are shown in the figure corresponding the “positive”

and “negative” directions of the unstable and stable eigenvector directions. Figure

14 only depicts the positions of the manifold trajectories, however; for the spacecraft

to be “on” a particular manifold, the spacecraft must be at the exact position and

velocity of the manifold trajectory.

The CR3BP, the insight into the CR3BP, and the associated design tools discussed

in this section are employed in Chapter 4 to design a trajectory from near-Earth to

a periodic orbit in the vicinity of L1. The next section discusses the theory behind

optimization and details specific methods that are used in this investigation.

2.3 Optimization Fundamentals and Techniques

Optimization can be divided into many different classifications and is a broad topic

of interest. Perhaps the two most fundamental branches of classifications are param-

eter optimization and functional optimization. In parameter optimization, commonly

referred to as optimal design, the parameters are time-invariant and limit the prob-
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Figure 14. Stable and unstable manifold trajectories emanating from periodic orbit in
the vicinity of L1 in nondimensional rotating barycentric frame
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lem to a finite dimension. For functional optimization, frequently referred to as

optimal control theory, one or more of the parameters are dynamic or functions of

time, thus the problem is no longer of finite dimension. The reason why is it called

functional optimization is because the function being minimized is a function of a

function, or a functional [37]. Another important distinguishing category is between

direct and indirect methods of optimization. When concerned with parameter op-

timization, indirect methods exploit the optimality criteria or Karush-Kuhn-Tucker

conditions (KKT) to solve for optimal solutions, while direct methods are those that

start with an initial guess and search the design space iteratively for a solution [5].

The KKT first-order necessary conditions are a way to check optimality of an equality

or inequality constrained problem [5]. Conversely, when discussing optimal control,

indirect methods solve for the solution via the necessary conditions from the calculus

of variations, whereas direct methods transcribe the optimal control problem into a

simpler-to-handle parameter optimization problem [6]. This investigation focuses on

direct methods to generate optimal solutions.

2.3.1 Parameter Optimization

The optimization problems in this investigation are directly transcribed into pa-

rameter optimization problems, thus, it is necessary to introduce the concepts behind

parameter optimization. The following discussion and notation is modeled after the

parameter optimization section in Longuski, Guzmn, and Prussing [37].

Parameter optimization is concerned with finding extrema through methods that

stem from calculus. An extremum can be a maximum or a minimum as well as either

local to a region or global to the entire function.

Figure 15 demonstrates the difference between local and global extrema. Since

the 𝑥-domain is bounded, defining the global maximum and minimum is relatively
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Figure 15. Local and global extrema, adapted from Arora [5]

straightforward. In other cases, such as if 𝑓(𝑥) is unbounded, a global optimum may

or may not exist depending on the end behavior of the function. Given that parameter

optimization is concerned with finding maxima and minima, the problem is typically

stated as:

Find: 𝑋

such that the function 𝐽 is minimized

𝐽 = 𝑓(𝑋)

The function 𝐽 is a scalar performance index called a cost function while 𝑋 is a

constant vector of 𝑛 dimensions [37]. It is important to note that the following

discussion and the current investigation assumes the cost function is to be minimized;

if a maximum is to be found, one simply adds a negative sign in front of the function.

From calculus, we know that at a maximum or minimum the first derivative of the

function is equal to zero, thus, we are able to define the first-order necessary condition

for a local minimum.
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𝜕𝑓(𝑋*)

𝜕𝑋 𝑖

= 0 (61)

Since the first derivative only identifies stationary points, the second derivative is

needed in order to identify the nature of the extrema. A second derivative less than

zero corresponds to a maximum, and a second derivative greater than zero corresponds

to a minimum. For a minimum, the second-order necessary condition states that the

Hessian of the function at 𝑋* must be positive semidefinite or positive definite [5]

where the Hessian is defined as

𝐻(𝑋*) =

[︂
𝜕2𝑓

𝜕𝑋𝑖𝜕𝑋𝑗

]︂
; 𝑖 = 1 to 𝑛, 𝑗 = 1 to 𝑛 (62)

The second-order sufficiency condition for the local extrema states that if the Hessian

is positive definite at the point𝑋*, then𝑋* is a local minimum for the function 𝑓(𝑋).

Positive definiteness can be discerned via the 𝑛 eigenvalues of the Hessian matrix [5].

If they are all positive, greater than zero, then the matrix is positive definite. If one

or more of the eigenvalues is zero, then the matrix is positive semidefinite. A point

satisfying the first-order necessary condition, the second-order necessary condition,

and the second-order sufficiency condition is indeed a local minimum. The necessary

conditions are required, however; they may be met at a point that is not a local

minimum. Therefore, the sufficiency condition is included to ensure the point is a

local minimum.

So far in this development, the functions have been unconstrained; however, it is

likely that a real system being optimized will have one or more constraints that must

be satisfied. A convenient way to handle constraints in an optimization problem is

by using Lagrange multipliers. First and foremost, the constraint must be expressed
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algebraically in the form

𝜑𝑚(𝑋1, ..., 𝑋𝑛) = 0 (63)

where 𝑚 < 𝑛 so that there are 𝑛−𝑚 independent variables. If there is an equal

number of constraints as there are parameters (𝑛 = 𝑚), then there can only be one or

no solutions. Lastly, if there are more constraints than parameters, then the problem

is over constrained and there are no solutions [37]. It is important to note that the

constraints are assumed to be linearly independent such that there is no redundancy

in the problem formulation. Once all 𝑚 constraints have been expressed, 𝑚 scalar

constants known as Lagrange multipliers (𝜆1...𝜆𝑚) can be introduced to the problem.

This is done by considering what is known as the Lagrangian function below

𝐿(𝑋1, ..., 𝑋𝑛, 𝜆1..., 𝜆𝑛) = 𝐽 + 𝜆1𝜑1 + ...𝜆𝑚𝜑𝑚 (64)

The Lagrangian essentially transforms the constrained system into an unconstrained

optimization problem where the equations below must now be solved for the unknowns

[37].

𝜕𝐿

𝑋𝑖

= 0; 𝑖 = 1 to 𝑛 (65)

𝜕𝐿

𝜆𝑗
= 𝜑𝑗; 𝑗 = 1 to 𝑚 (66)

The reason why the Lagrange multipliers are appended is because, in practice, it

is easier to solve the 𝑛+𝑚 equations when compared to solving the constrained

system with fewer unknowns [37]. For the system above, the same necessary and

sufficient conditions from the unconstrained optimization problem apply; however,

there are now an additional 𝑚 equations for the partials with respect to the Lagrange

multipliers that must also be handled.

In order to deal with inequality constraints, slack variables are appended to the
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constraints to transform them into equality constraints with Lagrange multipliers still

in place to further reduce the system [5]. The inequality constraints take on the form

below

𝜑𝑚(𝑋1, ..., 𝑋𝑛) + 𝑠2 = 0 (67)

where 𝑠 is a slack variable. The slack variable serves as another scalar unknown

allowing design variables with values satisfying the interior feasible region of the

inequality to act as if they are satisfying the constraint at the boundary.

The nonlinear programming (NLP) problem is essentially parameter optimization

with a nonlinear objective function, nonlinear constraints, or both. In many sources,

NLP and parameter optimization are synonymous. An NLP solver, as is used in

this investigation, is an algorithm equipped to solve a parameter optimization by

satisfying the KKT conditions.

2.3.2 Optimal Control and Indirect Transcription

Functional optimization, or optimal control, adds a level of complexity to optimal

design in that it is based on the calculus of variations, where functionals are being

minimized or maximized. Since the optimal control problem in this investigation is

directly transcribed, as opposed to indirectly transcribed, into a TBVP, the classical

optimal control problem is only introduced. For greater detail on indirect optimal

control theory, refer to Bryson and Ho [38].

To highlight the disparity in complexity between parameter optimization and op-

timal control, Betts states, “the optimal control problem may be interpreted as an

extension of the NLP problem to an infinite number of variables” [32]. The exten-

sion to an infinite number of variables is due to the necessity of defining the optimal

control continuously over the entire trajectory. Fundamentally, the problem requires
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solving for the control time history 𝑢(𝑡) such that 𝐽 is minimized

𝐽 = 𝜑[𝑋(𝑡𝑓 ), 𝑡𝑓 ] +

∫︁ 𝑡𝑓

𝑡0

𝐿[𝑋(𝑡),𝑢(𝑡), 𝑡]𝑑𝑡 (68)

where the first term on the right-hand-side is the terminal cost and the integral is

the path cost [38]. 𝑡0 and 𝑡𝑓 designate the initial and final time, respectively. The

Lagrangian 𝐿 is similar in form to equation (64); however, now it is a function of the

control 𝑢(𝑡) as well as the system state variables 𝑋(𝑡) and time 𝑡. The cost function

in equation (68), given the initial conditions, is subject to the system state equations

�̇� = 𝑓 [𝑋(𝑡),𝑢(𝑡), 𝑡] (69)

the boundary conditions

𝜓[𝑋(𝑡0),𝑢(𝑡0), 𝑡0] = 0

𝜓[𝑋(𝑡𝑓 ),𝑢(𝑡𝑓 ), 𝑡𝑓 ] = 0

(70)

and the path constraint vector

𝑔[𝑋(𝑡),𝑢(𝑡), 𝑡] = 0 (71)

The system defined above is commonly known as the problem of Bolza due to the

existence of both the terminal and path costs in the cost function 𝐽 . Without the

path cost, the problem is reduced to Mayer form and conversely, if only the path cost

is present, it is known as the Lagrange Problem [37].

Analogous to the method used in Section 2.3.1, the resulting augmented cost

function after appending arbitrary multipliers to satisfy the constraints is written

as [38]

𝐽 = [𝜑+ 𝜈𝑇𝜓]𝑡𝑓 +

∫︁ 𝑡𝑓

𝑡0

{︁
𝐻[𝑋(𝑡),𝑢(𝑡), 𝑡,𝜆,𝜇]− �̇�

}︁
𝑑𝑡 (72)
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where the Hamiltonian of the system is defined as

𝐻[𝑋(𝑡),𝑢(𝑡), 𝑡,𝜆,𝜇] = 𝐿[𝑋(𝑡),𝑢(𝑡), 𝑡] +𝜆𝑇 (𝑡)𝑓 [𝑋(𝑡),𝑢(𝑡), 𝑡] +𝜇𝑇 (𝑡)𝑔[𝑋(𝑡),𝑢(𝑡), 𝑡] (73)

The Lagrange multipliers, 𝜈, are appended to the boundary constraints, the costate

variables, 𝜆, are adjoined to the differential constraints, and the multipliers, 𝜇, cor-

respond to the path constraints [32]. In Section 2.3.1, the first partial derivatives of

the Lagrangian were taken and set equal to zero to provide the necessary conditions

for optimality. In this case, the first variation of the augmented function is set equal

to zero (𝛿𝐽 = 0), resulting in, after extensive derivation, the necessary optimality

conditions known as the Euler-Lagrange equations [32].

�̇� = −𝐻𝑇
𝑋 (74a)

0 =𝐻𝑇
𝑢 (74b)

�̇� =𝐻𝑇
𝜆 (74c)

The subscripts are shorthand notation denoting the variables in which partial deriva-

tives are taken. A rigorous derivation of the Euler-Lagrange equations can be found

in Meirovitch or Greenwood [30, 39]. Satisfying the boundary conditions as well as

the Euler-Lagrange equations yields the optimal solution to the problem of Bolza.

This technique showcases the classical approach for indirectly transcribing the

optimal control problem into a TPBVP. Solving the indirectly transcribed system

for simple optimization problems can be completed analytically; however, for most

complex problems, a numerical optimization method, such as an NLP algorithm, is

commonly used [40]. It is important to note that using a numerical optimization

technique on an indirectly transcribed system does not mean a direct approach is

being taken. Indirect vs. direct optimization is a matter of distinguishing between
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the transcription method employed, not on the method used to solve the resulting

TPBVPs.

A reasonable question to ask is: why not always use the indirect transcription

method? In the context of a well defined scenario, given a user with a sufficient

optimal control theory background, indirect transcription may not pose a problem.

However, if the problem is not well defined, such as the case where multiple con-

straint combinations and formulations are to be tested, re-derivation of the system

needs to be taken. Extensive re-derivation is not desirable and can lead to additional

avenues for introducing errors. Another disadvantage to the indirect method is, when

path constraints are introduced, such as a variable number of finite burn arcs, the

constrained-arc sequence much be known a priori [32]. Requiring the user to already

have the required insight to satisfy this concern is not always practical, especially

in complex systems. Lastly, an initial guess for the costates is required such that

the numerical optimization method can converge. Consistent with the theme of this

investigation, a search algorithm such as PSO may be used to find the costates and

has been shown to be a viable technique [41]. However, direct transcription, while

not without its own disadvantages, is the approach employed in this investigation to

solve a variety of problems.

2.3.3 Direct Transcription and Shooting

The primary difference between indirect and direct transcription methods is that

direct methods discretize the state and control arcs into a sequence of finite seg-

ments whereas indirect transcription uses a continuous state and control. Also, direct

methods do not explicitly apply the Euler-Lagrange equations nor do they require ex-

tensive knowledge of optimal control theory [40]. Without requiring applied optimal

control theory, it is easier to change problem formulations and substitute in differ-
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ent constraints. Direct methods, developed after indirect methods, are a hallmark

of the advent of modern computing due to the greater computational expenditure

required [3].

Direct transcription methods divide the controlled segment(s) into 𝑛𝑠 intervals

𝑡 = [𝑡0, 𝑡1, 𝑡2, ..., 𝑡𝑀 ] (75)

where 𝑀 is the number of nodes such that 𝑀 = 𝑛𝑠 + 1 [32]. The state 𝑋(𝑡) and

control 𝑢(𝑡) is then defined at each node.

    

( ) 

( ) 

… 

( ) ( ) ( ) 
( ) 

( ) ( ) ( ) ( ) 

Figure 16. Discretized state and control

After discretizing the states and control time histories, the values of the states

at each of the nodes can be calculated via numerical integration, and the control

values can be treated as parameters to be optimized via NLP. Any path constraints

are enforced at the nodes, and boundary constraints are enforced at the initial and

terminal conditions. This approach describes a very simple direct technique known

as direct single shooting. Shooting is an appropriate name because the initial state

can be thought of as shot, via numerical integration, to the final time and checked
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for constraint violation as well as an improving objective function value. Multiple

shooting is a more powerful technique that can be applied when the shape of the

optimal trajectory is known by inserting variable state parameters along the trajectory

to also be optimized along with the control parameters. The variable state parameters

give the initial condition a qualitative shape where the optimizer hopefully finds a

locally optimal solution that inherits these qualities.

For both shooting methods, the initial conditions as well as time can be set as

parameters to be optimized. Other trajectory design parameters such as thrust effi-

ciency, throttling, and pointing angles may be included in the design parameter array

𝑃 .

𝑃 𝑇 = [𝑈, 𝑇,𝐷]𝑇 (76)

where 𝑈 is the collection of all the control parameters, 𝑇 contains the durations of

all of the segments, and 𝐷 hold any remaining design parameters. The cost function

𝐽 is a function of Φ, such that the optimization problem is to minimize 𝐽

𝐽 = Φ(𝑃 ) (77)

subject to the bounds

𝐵𝑙 ≤

{︃
𝑃

𝐶(𝑃 )

}︃
≤ 𝐵𝑢 (78)

The upper and lower bounds of the constraints are designated by 𝐵𝑢 and 𝐵𝑙, re-

spectively [6]. The array 𝐶 is the collection of all of the nonlinear constraints; path

constraints evaluated at the nodes are also collected in the 𝐶(𝑃 ) term. This for-

mulation is remarkably simple and allows for easy implementation of a variety of

constraints.

Shooting does not limit the number of controlled segments to unity. In fact,

67



a shooter only requires a function Φ to transform a given set of initial conditions

and control variables into the end state. The number of controlled segments and

uncontrolled segments can be variable. For example, if a multiple-burn trajectory

is being optimized, the number of burns and coasts can be left up to the optimizer

to decide. Allowing the duration of each of the burn and coast segments to be a

parameter, unneeded segments may collapse to zero [6]. This is a powerful benefit

when compared to indirect methods that require intuition into the shape or nature of

the optimal solution. Figure 17 depicts a notional diagram of single shooting where

𝑋*(𝑡) is the optimal trajectory and 𝑋 𝑖(𝑡) is the 𝑖th guess for the trajectory.

𝑿∗(𝑡0) 

𝑿𝒊(𝑡0) 

𝑿∗(𝑡) 

𝑿𝒊(𝑡) 

𝑿𝒊(𝑡𝑓) 
𝑿∗(𝑡𝑓) 

𝑿𝒊+𝟏(𝑡0) 

𝑿𝒊+𝟏(𝑡𝑓) 

𝑿𝒊+𝟏(𝑡) 

Earth 

Figure 17. Notional diagram of single shooting

The NLP solver iteratively approaches the optimal trajectory given a baseline

while ensuring the constraints are met. The KKT conditions are checked by the NLP

solver to verify that a locally optimal solution has been found. The search direction

and convergence behavior depends on the problem and specific algorithm chosen.

In most cases, the NLP solver utilizes gradient information to dictate the search

direction. Providing this information to the NLP solver can reduce computation

time. Some solvers can run without the gradient information provided by the user

and numerically determine the gradients via finite differencing, but this often results
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in longer run times. The gradients of the scalar cost function as well as the constraints

can be provided in the form

∇𝐽 =
𝜕𝐽

𝜕𝑃
(79)

∇𝐶 =
𝜕𝐶

𝜕𝑃
(80)

For problems that are highly discretized, the parameter array 𝑃 can be very

large. This often results in sparse gradient and Hessian matrices; sparse means a

high number of zero elements. Detailed information on various NLP algorithms and

techniques for handling sparse large-scale problems can be found in Betts [32].

2.3.4 Runge-Kutta Shooting

As mentioned, shooting requires a function Φ to transform the initial conditions to

the end state. Due to the insertion of continuous control and non-integrable segments,

numerical integration is required. A widely used integration scheme is the Runge-

Kutta (RK) method. Numerical integration lends itself to direct transcription due

to the fact that the integration occurs over a discretized time interval. For each

step in time, multiple RK integration steps can be taken. In this investigation, three

integration steps are chosen for each time step. An advantage of RK shooting is that

additional control parameters can be inserted at additional points between the nodes.

Figure 18 shows the three-step RK integration scheme.

In Figure 18, the subscript 𝑛 designates a particular node. Also, the control

parameters between the nodes are designated as 𝑣. With three integration steps,

five additional control parameters can be inserted per time step. Having additional

control parameters is beneficial when large changes in the control occur over short

periods of time or at a much faster rate than the state parameters [6]. This advantage
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Figure 18. Three-step Runge-Kutta integration, adapted from Conway [6]

proves to be particularly useful for the low-thrust trajectories. The intermediate

state approximations, 𝑋𝑠, are not explicitly outputted, but they are necessary for

the three step process. Each RK step is a fourth-order approximation. Higher order

RK integration schemes exist and may provide increased precision, but at greater

computational expense. The fourth-order RK integration equations are presented

below [6].

𝑋1
𝑠1 =𝑋𝑛−1 +

1

6
Δ𝑡𝑓(𝑋𝑛−1,𝑢𝑛−1) (81a)

𝑋2
𝑠1 =𝑋𝑛−1 +

1

6
Δ𝑡𝑓(𝑋1

𝑠,𝑣𝑛1) (81b)

𝑋3
𝑠1 =𝑋𝑛−1 +

1

6
Δ𝑡𝑓(𝑋2

𝑠,𝑣𝑛1) (81c)

𝑋4
𝑠1 =𝑋𝑛−1 +

1

12
Δ𝑡[(𝑓(𝑋𝑛−1,𝑢𝑛−1) + 2𝑓(𝑋1

𝑠,𝑣𝑛1) + 2𝑓(𝑋2
𝑠,𝑣𝑛2) + 𝑓(𝑋3

𝑠,𝑣𝑛2)] (81d)

𝑋𝑠1 =𝑋
4
𝑠1 (81e)

To calculate the second step, 𝑋𝑠1 is used as the initial conditions with subsequent

intermediate control parameters inserted as necessary. The third step repeats the

same process and yields the approximation for 𝑋𝑛. Since numerical integration is an

approximation, it is important to choose a time step short enough to yield accurate

results but long enough such that the computation time is reasonable. The appropri-
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ate level of discretization depends on the problem and is discussed on a case-by-case

basis in subsequent chapters.

2.3.5 Particle Swarm Optimization

Particle swarm optimization (PSO) is an inherently different optimization ap-

proach from the previously introduced methods that has recently gained popularity

in its application to spacecraft trajectory optimization. It officially falls under a

broader series of optimizers termed evolutionary algorithms (EA), where the most

well-known is the genetic algorithm (GA) [6]. EAs numerically search the design

space through methods modeled after behavior found in nature. The advantages of

using EAs are that an initial guess is not necessarily required, and they are claimed

to be more likely to find a global minimum in the design space when compared to

other methods [6].

GAs, while still EAs, are unique in that they mimic the Darwinian process of

natural selection. Each individual in a genetic algorithm is encoded, much like DNA,

with a string of binary values that represent candidate solutions. Over the course of

an iteration, individuals can undergo genetic processes such as genetic cross-over and

mutation. After the desired number of iterations, it is expected that the individuals

evolve toward an optimal or satisfactory solution [42].

The PSO algorithm, in particular, mimics the behavior of flocking birds and

schooling fish and was developed by Kennedy and Eberhart in 1995 [43]. Its at-

tractiveness stems from the fact that it has fewer algorithmic parameters to specify

and fine-tune compared to GAs and is simpler to implement by lacking operators

such as cross-over and mutation [5]. The PSO algorithm starts out by defining the

flock or swarm. Each agent or particle is randomly assigned values for each of the

design parameters. The swarm, as a whole, is essentially scattered about the design
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space. Each particle then evaluates its own “fitness” based on the system’s cost func-

tion and remembers its personal best fitness after each iteration [43]. A global best

is also tracked by the swarm to designate the best solution found up to the current

iteration by the entire population. After each iteration, the position and velocity of

each particle is updated such that the particle moves toward its own best solution

as well as the global best solution. A simple PSO algorithm from Arora is formally

presented below [5]:

1. Initialize the system by specifying 𝑁𝑝, 𝑐1, 𝑐2, and 𝑘𝑚𝑎𝑥, which are the number

of particles in the swarm, the cognitive parameter, social parameter, and max

number of iterations, respectively. The values of 𝑐1 and 𝑐2 range between 0 and

4, but they are usually set to 2.

2. Randomly assign each particle a location in the design space where the initial

location of the 𝑖th particle is written 𝑥(𝑖,0). Also, evaluate the cost function for

each of the particle locations, 𝐽(𝑥(𝑖,0)) for 𝑖 = 1 to 𝑁𝑝, and determine the best

solution among all the particles, 𝑥
(𝑘)
𝐺 , where 𝑘 = 0.

3. Calculate the velocity for each of the particles using the equation below

𝑣(𝑖,𝑘+1) = 𝑣(𝑖,𝑘) + 𝑐1𝑟1(𝑥
(𝑖,𝑘)
𝑝 − 𝑥(𝑖,𝑘)) + 𝑐2𝑟2(𝑥

(𝑘)
𝐺 − 𝑥(𝑖,𝑘)); 𝑖 = 1 to 𝑁𝑝

where the variables are defined as the following.

𝑣(𝑖,𝑘+1) Velocity to update the 𝑖th particle for the next iteration

𝑣(𝑖,𝑘) Velocity of the 𝑖th particle at the 𝑘th iteration

𝑥(𝑖,𝑘) Position of the 𝑖th particle at the 𝑘th iteration

𝑥
(𝑖,𝑘)
𝑃 Best position the 𝑖th particle has seen up to the 𝑘th iteration

𝑥
(𝑘)
𝐺 Best position the swarm has seen up to the 𝑘th iteration
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𝑟1, 𝑟2 Random number between 0 and 1

For initialization purposes, the vectors 𝑣(𝑖, 0) are set to zero.

4. Update the positions of the particles using the equation below.

𝑥(𝑖,𝑘+1) = 𝑥(𝑖,𝑘) + 𝑣(𝑖,𝑘+1); 𝑖 = 1 to 𝑁𝑝

Also, make sure the positions of the particles are within the parameter bounds

such that

𝑥𝐿𝑜𝑤𝑒𝑟 ≤ 𝑥(𝑖,𝑘+1) ≤ 𝑥𝑈𝑝𝑝𝑒𝑟

𝑥𝐿𝑜𝑤𝑒𝑟 Vector of lower bounds for all design parameters

𝑥𝑈𝑝𝑝𝑒𝑟 Vector of upper bounds for all design parameters

If 𝑥(𝑖,𝑘+1) violates one or more of the bounds, set the values of the parameters

in violation equal to the nearest bounds.

5. Update the personal and global best solutions by checking the following

If 𝐽(𝑥(𝑖,𝑘+1)) ≤ 𝐽(𝑥
(𝑖,𝑘)
𝑃 ), then 𝑥(𝑖,𝑘)𝑃 = 𝑥(𝑖,𝑘)

else 𝑥
(𝑖,𝑘+1)
𝑃 = 𝑥

(𝑖,𝑘)
𝑃 ; 𝑖 = 1 to 𝑁𝑝

If 𝐽(𝑥(𝑖,𝑘+1)) ≤ 𝐽(𝑥𝐺), then 𝑥𝐺 = 𝑥
(𝑖,𝑘+1)
𝑃 ; 𝑖 = 1 to 𝑁𝑝

6. After step 5, check to see if 𝑘 = 𝑘𝑚𝑎𝑥. If so, stop and report 𝑥𝐺 as the solution.

If not, add 1 to 𝑘 and return to step 2.

Figure 19 gives a notional depiction of how each particle conducts its position

velocity update at each iteration. On the left-hand side of the figure, the particles
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in the swarm populate the design space, 𝑃 , where the positions of the particles

correspond to candidate solutions. For the right-hand side, a zoomed in view of a

single particle is given. The zoomed in particle, at each iteration, performs a position

and velocity update based on its current velocity, 𝑣(𝑖,𝑘), personal best position, 𝑥
(𝑖,𝑘)
𝑃 ,

and global best position, 𝑥𝑘
𝐺.

𝑃3 

𝑃1 

𝑃2 

𝒙(𝑖,𝑘) 𝒗(𝑖,𝑘) 

𝒙𝑃
(𝑖,𝑘) 

𝒙𝐺
(𝑘) 𝒙(𝑖,𝑘+1) 

𝒗(𝑖,𝑘+1) 

Figure 19. Diagram of the PSO position velocity update process

The algorithm presented can be employed in order to handle an unconstrained

optimization problem. However, in many cases, equality or inequality constraints

must also be satisfied in order to find a feasible solution. In the context of EAs,

Koziel and Michalewicz identified four categories of approaches that can be taken:

penalty functions, feasible solution preservation, distinguishing between feasible and

infeasible solutions, and hybrids of the previous categories [44]. The method employed

in this investigation is a penalty function approach where the penalty depends on the

type of constraint.

First off, inequality constraints pose less of a problem to the PSO because they de-

crease the size of the feasible search space without removing a degree of freedom. To

account for them, the particle can be assigned an infinite fitness value if one or more

74



of the inequality constraints are violated. In addition, the velocity components cor-

responding to the violated parameters must be set to zero to ensure that the velocity

update is only affected by the cognitive and social components of its movement [41].

The algorithm includes modified steps 2 and 3 such that for all 𝑁𝑝 particles, one

evaluates the inequality constraints. If any are violated, one sets 𝐽(𝑥(𝑖,𝑘)) = ∞ and

𝑣(𝑖,𝑘+1) = 0.

Equality constraints are slightly more problematic because they do decrease the

degrees of freedom of the problem by 𝑚 equality constraints. The approach employed

in this investigation is to append a penalty function to the system cost function such

that

𝐽 = 𝐽 +
𝑚∑︁
𝑟=1

𝛼𝑟|𝜑𝑟(𝑥
(𝑖,𝑘))| (82)

where there are 𝑚 equality constraints defined below.

𝜑𝑟(𝑥
(𝑖,𝑘)) = 0; 𝑟 = 1 to 𝑚 (83)

The weighting coefficients in front of the equality constraints need to be carefully

chosen such that there is balance between constraint violation and algorithm condi-

tioning [41]. If the weighting coefficient is too high, the optimizer may have difficulty

satisfying the constraint, whereas a very low chosen value may soften the constraint

to less than the desired convergence. Methods for choosing these coefficients can vary

widely in complexity. Prasad proposed a class of variable penalty functions in the con-

text of a nonlinear programming problem in order to improve performance [45]. For

this investigation, a trial-and-error approach was used and checked based on desired

convergence tolerances.

As with many EAs, the PSO algorithm presented is just one of several variants

that have been formulated and utilized. There are algorithms that call for variable
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social and cognitive parameters through weighting based on the progress to the final

iteration. Such schemes are set up to emphasize the cognitive parameters at the

beginning of the iterative process for diversification and then to see a shift to higher

weighting of the social parameter so that the particles drift strongly toward the global

best by means of intensification [46]. Other authors have used random numbers for

defining the algorithmic parameters at each iteration thereby increasing the stochastic

nature of the approach [6]. Variation can also be seen in local and global formulations.

Some algorithms may record local best solutions for particles in the vicinity of each

other instead of tracking the global best in order to mitigate the risk of the algorithm

converging on a local optimum [43]. Ultimately, care must be taken when choosing

which type of variant to apply to different systems. Also, fine-tuning of algorithmic

parameters may be necessary for acceptable optimizer performance.

2.4 Spacecraft Propulsion

The fundamentals of thrust and propulsion essentially describe a direct application

of Newton’s second and third laws. Propulsive force is generated by ejecting mass

from the rocket body or satellite at high velocities much like “for every action there is

an equal and opposite reaction” [7]. In addition, the force generated by a propulsion

system typically happens over a finite time duration. The force of thrust integrated

over time is known as total impulse, 𝐼𝑡.

𝐼𝑡 =

∫︁ 𝑡

0

𝐹𝑑𝑡 (84)

To measure efficiency, total impulse per unit weight of propellant, or specific

impulse, 𝐼𝑠𝑝, is used. Assuming a constant thrust level and mass flow rate, 𝐼𝑠𝑝 is

expressed in equation (85)
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𝐼𝑠𝑝 =
𝐼𝑡

𝑚𝑝𝑔0
(85)

where𝑚𝑝 is the total effective mass of propellant expelled and 𝑔0 is equal to 9.81 m/s2.

Note that 𝑔0 is always the acceleration due to gravity at Earth sea level regardless of

the local gravity field [7]. In this investigation, constant thrust, 𝐹 , is assumed, thus,

equation (85) can be rewritten as

𝐼𝑠𝑝 =
𝐹

�̇�𝑔0
=
𝐹

�̇�
(86)

where �̇� is the mass flow rate. Another useful metric is the effective exhaust velocity,

𝑐, which is the average equivalent velocity ejected from the body [7].

𝑐 = 𝐼𝑠𝑝𝑔0 =
𝐹

�̇�
(87)

The effective exhaust velocity is essentially equivalent to the 𝐼𝑠𝑝, the difference

being a factor of 𝑔0; therefore, the two are interchangeable [7]. A more tangible mea-

sure of efficiency is the propellant mass fraction, which is the ratio of the propellant

mass to the initial mass of the system [7]. The relevant expressions are

𝜁 =
𝑚𝑝

𝑚0

(88)

𝑚𝑓 = 𝑚𝑜 −𝑚𝑝 (89)

where 𝜁 is the propellant mass fraction, 𝑚0 is the initial mass of the spacecraft,

and 𝑚𝑓 is the final mass of the spacecraft after the transfer has occurred. In most

propulsion literature, 𝜁 is the propellant mass fraction of the propulsion system itself;

however, in this investigation it is used for the entire satellite.

Depending on the magnitude of the force, desired ranges of acceleration and ef-
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ficiencies can only be attained by certain classes of propulsion systems. In gen-

eral, high-thrust, but lower propellant efficiency, is attained by chemical propulsion

systems. Conversely, low-thrust, high-efficiency performance is provided by electric

propulsion.

Figure 20. Acceleration vs. effective exhaust velocity, reproduced from Sutton and
Biblarz [7]

The low-thrust 2BP trajectories in this investigations assume propulsive acceler-

ation levels of 0.01g (0.0981 m/s2) and an effective exhaust velocity of 11.59 km/s

(𝐼𝑠𝑝 = 1, 181 s). From Figure 20, this puts the propulsion system at the upper fringes

of the “Solar heated 𝐻2” regime [7]. The reason for choosing this particular perfor-

mance level is due to the lack of analytical approximations available for low-thrust

transfers [2]. According to Chobotov, there are three ranges of thrust accelerations;

their associated solution strategies are given below:

∙ High-Thrust (𝑇/𝑊0 ≈ 0.5 to 1.0): Impulsive burns is a viable assumption.
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∙ Low-Thrust (𝑇/𝑊0 ≈ 10−2 to 10−1): Numerical optimization is required.

∙ Very-Low-Thrust (𝑇/𝑊0 ≈ 10−5): Thrust is modeled as a perturbation and

continuous first-order analytic spiral solution can be used.

Since the chosen thrust specifications for the 2BP trajectories fall into the “low-

thrust” range, there is a need for the numerical optimization techniques as well an

initial guess strategy. In contrast, for the impulsive transfers in the CR3BP, the need

for an initial guess strategy aided by the analytical insight available is dictated by

the complexity of the dynamical environment and not by the propulsive acceleration

level. That is, in the CR3BP, there is no known closed-form analytical solution, thus,

an initial guess is not readily available.

2.5 Relevant Works in Literature

The main bodies of scholarly works relevant to this investigation are those con-

cerning continuous and low-thrust transfers, direct transcription methods, particle

swarm optimization, and the circular restricted three-body problem. Chapters 3 and

4 present the following two sets of test cases, respectively:

1. Low-thrust, fuel-optimal, continuous and multiple-burn transfers from a copla-

nar and non-coplanar low-Earth-orbit to a geostationary orbit designed in a

two-body dynamical model with and without oblate Earth effects

2. Impulsive transfer from near-Earth to a periodic orbit about the Earth-Moon

cislunar collinear Lagrange point with minimized burn costs designed in a multi-

body dynamical environment

For the first set of cases, Edelbaum provides an analytic approach to the optimal

very-low-thrust transfer between circular coplanar and non-coplanar orbits [47]. The
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method models the acceleration due to thrust as a perturbation and finds the optimal

solution to be a many-revolution spiral. Since the solution requires the perturbing

acceleration to be very small compared to dominant gravitational acceleration, this

solution only applies to very-low-thrust accelerations. Wiesel and Alfano further gen-

eralize Edelbaum’s work to allow for constant thrust as opposed to constant acceler-

ation [48]. Burt provides the secular rates of change for the classic orbital elements

given very low levels of thrust, and Pollard extends the work to account for multiple

finite burn profiles and steering laws [49,50]. For high-thrust transfers between copla-

nar circular orbits of radius ratios less than 11.9, a two-impulse Hohmann transfer is

optimal in terms of change in velocity, Δ𝑉 , required [51]. Since the orbit radius ratio

between LEO to GEO is approximately equal to 6, the Hohmann transfer provides

the optimal transfer for high-thrust acceleration levels. When non-coplanar transfers

are investigated in the current work, the optimal high-thrust acceleration transfer is

assumed to use a combined plane change as the second impulse. The combined plane

change as the second impulse means all of the necessary inclination change occurs

instantaneously at the second impulse in addition to the recircularization required to

enter the target orbit. This assumption of using a combined plane change as the sec-

ond impulse is not necessarily optimal, but is sufficiently near-optimal for comparison

purposes in the current investigation.

The 2BP cases are intentionally run at thrust acceleration levels where neither

very-low-thrust spiral nor the Hohmann transfer are sufficiently accurate for an initial

guess. The difference in optimal solutions is due to a transition from gravitationally

dominant motion in the very-low-thrust case to thrust dominant motion in the impul-

sive case. This transition as well as the required Δ𝑉 across the thrust acceleration

spectrum for multiple orbit radius ratios are well documented in Vallado [52]. An

analytical approximation for coplanar transfers at mid-level thrust accelerations is
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provided by Spencer and Culp [53]. This analytical approximation does not allow

for inclination changes, thus, it could not be used for all of the two-body test cases.

In relaxing the continuous burn constraint and allowing intermittent coast arcs, the

required Δ𝑉 for a given transfer is lowered. The optimal solution depends on the

number of burns allowed and approaches the Δ𝑉 of the Hohmann transfer as the

number of burns increases. This is because, as the number of burns increases, the

required duration for the burns decreases until the transfer consists of an infinite num-

ber of small impulses. Pelouch and Redding et al. provide optimal control histories

and gravity loss information for finite-burn transfers between LEO and geostationary

orbits [54, 55].

Particle swarm optimization, as well as evolutionary algorithms in general, has

gained a significant amount of traction in the early twenty-first century. PSO, in

particular, is chosen due to its algorithmic simplicity while still boasting a freedom

from requiring an initial guess. Many authors use PSO for a variety of applications.

Works of notable relevance are those that apply it to space mission design. Pontani

and Conway demonstrate PSO’s ability to solve continuous and finite transfers as

well as periodic libration orbits in the CR3BP in multiple submissions [6, 56, 57].

Genetic algorithms are applied to calculate interplanetary trajectories in multiple

works [58,59,60]. The polynomial interpolation method used in this investigation to

parameterize continuous control time histories for PSO to optimize is detailed in Wall

and Conway [61]. In addition, Russell and Shampine as well as and Hargraves and

Paris have also employed similar polynomial-based interpolation schemes [62,63]. The

foundation for the piecewise polynomial interpolation or spline interpolation method

is based off of the work of Birkoff and de Boor [64].

Trajectory design in the CR3BP poses a unique challenge that can be approached

from a variety of angles. In the second set of test cases, the final target is insertion
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into an L1 periodic orbit. Howell and Pernicka demonstrate successful numerical de-

termination of periodic in-plane and out-of-plane orbits about the collinear Lagrange

points [33]. Conway and Pontani demonstrate PSO’s ability to accurately, though less

efficiently, calculate the periodic orbits as well [6]. Invariant manifold dynamics serve

as an efficient path to approaching the periodic orbit by following the “flow” of the

system dynamics in the second test case. An introduction to manifold dynamics in

the context of the Earth-Moon libration points is found in Grebow and Stuart [3,34].

Martin and Conway use a direct transcription technique to optimize a low-thrust

transfer between a geostationary transfer orbit and a low lunar orbit [65]. Evolu-

tionary algorithms are also used to calculate transfers from LEO to the Earth-Moon

libration points and LPOs by McMahon et al. and Abraham et al. [66, 67]. Their

cases are very similar to the ones posed in Chapter 4; however, in this investigation

PSO is used in conjunction with NLP.

2.6 Chapter Summary

The background knowledge provided in this chapter focused on the 2BP, CR3BP,

direct optimization techniques, and satellite propulsion. The theory given for each

section is not exhaustive, but is tailored toward the methodologies employed in the

following chapters. The material presented in this chapter is employed to design

minimum-fuel trajectories in the 2BP, in the 2BP plus oblate Earth effects, and in the

CR3BP. PSO is used to generate the initial guesses of the trajectories to subsequently

be improved upon by an NLP algorithm. The direct transcription methods utilized

for each of the test cases vary; however, they all resemble a form of direct single

shooting. The next chapter focuses on the near-Earth low-thrust trajectories.
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3. Low-Thrust Near-Earth Trajectory Design

Altitudes below GEO are considered to be near-Earth for trajectory design in the

current investigation. Within this regime, the 2BP is a very good approximation for

the dynamical environment an actual satellite experiences. For greater fidelity, addi-

tional perturbations such as higher degrees of the Earth’s geopotential, air drag, and

solar radiation pressure can be included in the model. Analytical solutions in the 2BP

are available for the very-low-thrust and impulsive transfer. At the very-low-thrust

and impulsive thrust acceleration levels, even when perturbations are added, the an-

alytical solutions still serve as reasonable initial guesses. However, analytical optimal

solutions to use as an initial guess are not available for low-thrust (as opposed to

very-low-thrust) transfers with or without perturbations. As a result, an initial guess

generation method is necessary when operating around the low-thrust acceleration

level to initiate any NLP solvers. PSO is employed as a way to generate the initial

guess. A polynomial approach is used to parameterize the continuous control time

history thereby minimizing the number of design variables PSO must optimize.

This chapter provides the methodology and results for low-thrust trajectories de-

signed in two-body and two-body with oblate Earth effects models. The trajectories

start at a low-altitude (300 km) circular orbit and end at a circular geosynchronous

altitude (∼35,786 km) orbit. Coplanar and non-coplanar transfers are investigated

where the non-coplanar trajectories start at 28.5 degrees and end at 0 degrees incli-

nation. In addition, the effects of allowing for finite burning as opposed to continuous

thrusting are investigated.
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3.1 Methodology

This section includes the low-thrust transfer model equations and state space rep-

resentations that are used to numerically propagate the spacecraft trajectories. Also,

details are given on the polynomial parameterization that PSO uses to generate the

low-thrust trajectory initial guesses. Lastly, specifics are provided on how the particle

swarm generated initial guess (PSOIG) is given to the NLP solver for improvement.

In the present chapter, all simulations range in computation time from less than

a few minutes to a few hours depending on the number of particles and iterations

used by the PSO and the number of design variables in NLP. The times corresponds

to elapsed times in MATLAB R○ (Version: 8.1.0.605 (R2013a); benchmark: 0.2930,

0.3178, 0.2058, 0.3201, 0.6751, 0.5911) [68]. Also, the computer used runs a 64-bit

Windows 7 operating system with 4GB of RAM and an Intel(R) Celeron(R) CPU

E3400 @2.60 GHz processor.

3.1.1 Low-Thrust Transfer Model

To optimize a minimum-fuel continuous or finite burn trajectory, the amount of

time the thruster is active directly corresponds to the amount of fuel spent. For

the continuous thrust trajectory, this means that the time of flight is equal to the

thrusting duration. Similarly, for finite burns, the thrust time is equal to the sum of

the burn arc durations. Thus, the focus of the optimizer is to minimize the burn time.

However, when formulating the problems, time of flight or total burn time is not the

only independent variable in the trajectory. The optimality of the trajectories also

depends on the control time histories of the thrust pointing angle. Allowing the thrust

pointing vector to vary over the flight provides ample variability for optimization to

occur. For the continuous thrust cases, the time of flight as well as the thrust pointing

time history are the parameters to be optimized. Extending to a finite burn model,
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the time of flight is segmented into individual burn arc and coast arc durations to be

optimized. To define the thrust pointing angle, two angles, 𝛼 and 𝛽, are used. The

thrust pointing angle corresponding to the direction within the instantaneous orbit

plane is 𝛼. The angle 𝛽 is the angle that defines the out-of-plane thrust component.

Figure 21 depicts the pointing angles where 𝑇 is the thrust vector.

Local Horizon 

𝑽𝜽 

𝑽𝒓 

𝑻 

𝑻𝒐 
𝛼 

𝛽 

Earth 

Figure 21. Thrust pointing angles

In Figure 21, 𝛼 is measured clockwise from the local horizon and 𝛽 is measured

from 𝑇𝑜 to 𝑇 , where 𝑇𝑜 is the projection of 𝑇 onto the instantaneous orbit plane. A

positive valued 𝛽 angle occurs when 𝑇 points out-of-plane in the northern direction

and vice versa. The velocity vector is parameterized into its radial (𝑉 𝑟) and tangential

(𝑉 𝜃) components.

The dynamics of the satellite are modeled in the restricted two-body problem

where the EOMs are

�̈� +
𝜇

𝑟3
𝑟 = 𝑎𝑑 (90)

This equation is very similar to equation (6); however, 𝑎𝑑 is added as a disturbing

acceleration [32]. In this chapter, the disturbing accelerations are the propulsive
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acceleration and the perturbing acceleration due to the oblateness of the Earth if it is

included. Rewriting equation (90) in terms of tangential and radial components and

assuming planar motions results in the state equations below

𝑋 =

⎡⎢⎢⎢⎢⎣
𝑉 𝑟

𝑉𝜃

𝑟

⎤⎥⎥⎥⎥⎦ (91)

�̇� =

⎡⎢⎢⎢⎢⎣
˙𝑉 𝑟

𝑉𝜃

�̇�

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
−𝜇−𝑟𝑉 2

𝜃

𝑟2
+ 𝑇

𝑚
sin(𝛼)

−𝑉𝑟𝑉 2
𝜃

𝑟
+ 𝑇

𝑚
cos(𝛼)

𝑉𝑟

⎤⎥⎥⎥⎥⎦ (92)

In equation (92), the 𝑇/𝑚 term is the thrust per unit mass or disturbing acceler-

ation due to thrust. The EOMs in equation (92) are strictly for the planar scenarios

since only the in-plane pointing angle, 𝛼, is being factored in. If the spacecraft is

assumed to provide constant thrust, NOT constant acceleration, then the thrust to

mass ratio at a given time can be written as

𝑇

𝑚
=

𝑐𝑛0

𝑐− 𝑛0𝑡
(93)

where 𝑐 is the effective exhaust velocity and 𝑛0 is the thrust to mass ratio at the

initial time [6]. Constant acceleration is not assumed because the variable mass of

the spacecraft due to propellant usage is included in the 𝑇/𝑚 term. All of the test

cases in this chapter use the same thrust specifications given in Table 5.
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Table 5. Test case thrust specifications

Parameter Dimensional Nondimensional

𝑐 11.58 km/s 1.5 DU/TU

𝑛0 0.01g 0.01 DU/TU2

These particular values were originally taken from Conway to validate preliminary

results but then used for all of the low-thrust transfers due to the interesting results [6].

In this chapter, all numerical simulations are run using the following nondimensional

units for increased computational performance

1 DU = 𝑟0 = 6678.137 km

1 TU =

√︃
DU3

𝜇
= 14.41 min

(94)

where 𝜇 = 398, 600.5 km3/s2. Since the initial radius, 𝑟0 for all of the transfers in

this section is at the same altitude LEO (300 km), the values for DU and TU remain

the same. An important note is that DU and TU are NOT to be confused with the

canonical DU and TU used in the 2BP where DU is equal to the radius of the Earth.

A different state space representation is offered for the transfers that include out-

of-plane motion. MEEs are used in this state space representation to facilitate the

inclusion of 𝐽2 and emphasize its effects. The MEEs are defined in Section 2.1.4.

Using MEEs and building the state space representation of the EOMs results in the

system shown in equation (95) [69].
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�̇� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̇�

𝑓

�̇�

ℎ̇

�̇�

�̇�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2𝑝
𝑤

√︁
𝑝
𝜇 0√︁

𝑝
𝜇sin(𝐿)

√︁
𝑝
𝜇
(𝑤+1)cos(𝐿)+𝑓

𝑤 −
√︁

𝑝
𝜇
𝑔[ℎsin(𝐿)−𝑘cos(𝐿)]

𝑤

−
√︁

𝑝
𝜇cos(𝐿)

√︁
𝑝
𝜇
(𝑤+1)sin(𝐿)+𝑔

𝑤

√︁
𝑝
𝜇
𝑓 [ℎsin(𝐿)−𝑘cos(𝐿)]

𝑤

0 0
√︁

𝑝
𝜇

𝑠2

2𝑤cos(𝐿)

0 0
√︁

𝑝
𝜇

𝑠2

2𝑤 sin(𝐿)

0 0
√︁

𝑝
𝜇
ℎsin(𝐿)−𝑘cos(𝐿)

𝑤

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
𝑎𝑟

𝑎𝜃

𝑎𝑤

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

√
𝜇𝑝(𝑤𝑝 )

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(95)

𝑠2 = 1 + ℎ2 + 𝑘2

𝑤 =
𝑝

𝑟
= 1 + 𝑓cos(𝐿) + 𝑔sin(𝐿)

(96)

The acceleration components are pointing in the radial direction 𝑎𝑟, along the

local horizon 𝑎𝜃, and in the orbit plane normal 𝑎𝑤 direction. The MEE EOMs allow

for spatial satellite motion. The accelerations due to the thruster are given by the

equations below.

𝑎𝑇ℎ𝑟𝑢𝑠𝑡𝑒𝑟 =

⎡⎢⎢⎢⎢⎣
𝑇
𝑚
sin(𝛼)cos(𝛽)

𝑇
𝑚
cos(𝛼)

𝑇
𝑚
sin(𝛽)

⎤⎥⎥⎥⎥⎦ (97)

Notice that both in-plane and out-of-plane pointing angles are now incorporated.

When incorporating 𝐽2 as another disturbing accelerations, the equations provided

by Kechichian using MEEs are employed [70].

𝑎𝐽2 =

⎡⎢⎢⎢⎢⎣
−3𝜇𝐽2𝑅2

⊕
2𝑟4

(︁
1− 12 [ℎsin(𝐿)−𝑘cos(𝐿)]2

𝑠4

)︁
−12𝜇𝐽2𝑅2

⊕
𝑟4

[ℎsin(𝐿)−𝑘cos(𝐿)][ℎcos(𝐿)+𝑘sin(𝐿)]
𝑠4

−6𝜇𝐽2𝑅2
⊕

𝑟4
[ℎsin(𝐿)−𝑘cos(𝐿)][1−𝑘2−ℎ2]

𝑠4

⎤⎥⎥⎥⎥⎦ (98)

Additional discussion on the 𝐽2 perturbation can be found in Section 2.1.5. In
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the present investigation, the coplanar transfers do not utilize MEEs nor do they

incorporate 𝐽2 perturbative effects. 𝐽2 is only included in the designated non-coplanar

transfers. The next section details the methodology used to generate an initial guess

using PSO for the low-thrust transfer model provided in this section.

3.1.2 PSO Initial Guess

When using an NLP solver, converging on an optimal solution typically depends

on the proximity of the initial guess to the final answer. While robust numerical al-

gorithms that have wide convergence ranges exist, the sensitivity of the problem can

significantly decrease the likelihood of convergence. Since PSO searches the solution

space without the need for an initial guess, it is a viable option for initial guess gen-

eration. PSO is not a “one-size-fits-all” approach; it works best when the dimension

of the search space is as small as possible. The question that needs to be answered

then is: how does one parameterize the continuous thrust pointing angle history into

a small finite set of parameters? A variety of approaches can be taken.

One approach for parameterizing the continuous control time history is to dis-

cretize the continuous control time history using a large time step. PSO then op-

timizes the control values that are held constant for each time step. The resulting

solution looks like a stair-step function with the approximate shape of the optimal

solution. This approach was initially investigated; however, finding the right time

step that yielded viable results proved to be a time consuming and iterative process.

Also, for the continuous thrust cases, the issue of singular arcs became predominant.

A singular arc arises when the optimal control solution is not unique [32]. An example

of a singular-arc solution is shown in Figure 22. This problem arises due to the lack

of path constraints limiting the rate of change of the control, thus, allowing for an

erratic solution. Placing path constraints can potentially solve the issue; however, an
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interpolation method is chosen in this investigation to more efficiently decrease the

size of problem.
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Figure 22. Singular arc control example

Another approach for parameterizing the continuous control time history that

holds promise is to model the control time history as a stringed together set of poly-

nomials frequently termed spline interpolation. This approach is shown to be effective

for spacecraft trajectory design in Wall and Conway [61]. The order of the polynomial

can be experimented with, though increasing the degree of the polynomial can cause

problematic oscillations due to Runge’s phenomenon [71]. The problematic oscilla-

tions that arise due to Runge’s phenomenon occur at the edges of an interval that is

interpolated using polynomials. The problem is exacerbated by increasing the degree

of the polynomial(s) used for the interpolation. A set of fourth-order polynomials

proves to be sufficient in the current investigation while still avoiding the problematic

oscillations at the edges. PSO optimizes the burn time(s) as well as the polynomial

coefficients that define the control angles throughout the burn(s). The polynomials

90



take the form

𝑐𝑛(𝑡) = 𝑘𝑛1(𝑡−
𝜏𝑖
2𝑛𝑠

Δ𝑡)4+𝑘𝑛2(𝑡−
𝜏𝑖
2𝑛𝑠

Δ𝑡)3+𝑘𝑛3(𝑡−
𝜏𝑖
2𝑛𝑠

Δ𝑡)2+𝑘𝑛4(𝑡−
𝜏𝑖
2𝑛𝑠

Δ𝑡)+𝑘𝑛5 (99)

where 𝑐𝑛(𝑡) is the control value given by the 𝑛th polynomial at time 𝑡, 𝜏𝑖 is the

number of time increments the entire controlled trajectory is partitioned into, 𝑛𝑠 is

the number of polynomials used, Δ𝑡 is the time-step size, and 𝑘𝑛(1−5) are the fourth-

order polynomial coefficients. The polynomials are centered at the middle of their

respective time intervals.

The PSO algorithm optimizes the polynomial coefficients and burn time(s) in the

design parameter array 𝑃

𝑃 =

[︂
𝑘11 𝑘12 𝑘13 𝑘14 𝑘15 · · · 𝑘𝑛5 𝑇

]︂𝑇
(100)

where 𝑇 contains the burn time(s). The bounds on the coefficients are set such that

the pointing angle stays within ±180 degrees. The bounds are calculated using the

equations below [61]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 𝜋

(
𝑡𝑓

𝑛𝑠𝑛𝑏
)4

− 𝜋

(
𝑡𝑓

𝑛𝑠𝑛𝑏
)3

− 𝜋

(
𝑡𝑓

𝑛𝑠𝑛𝑏
)2

− 𝜋

(
𝑡𝑓

𝑛𝑠𝑛𝑏
)

−𝜋

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑘𝑛1

𝑘𝑛2

𝑘𝑛3

𝑘𝑛4

𝑘𝑛5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜋

(
𝑡𝑓

𝑛𝑠𝑛𝑏
)4

𝜋

(
𝑡𝑓

𝑛𝑠𝑛𝑏
)3

𝜋

(
𝑡𝑓

𝑛𝑠𝑛𝑏
)2

𝜋

(
𝑡𝑓

𝑛𝑠𝑛𝑏
)

𝜋

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(101)

where 𝑛𝑏 is the number of burns assumed in the transfer. For the continuous thrust

transfers, 𝑛𝑏 is assumed to be 1. A particular difficulty with this method is that

discontinuities are allowed at the nodes between polynomials. Continuity can be en-
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forced; however, in this investigation, the polynomial end-points are left unrestricted

as to allow for potentially fast changes in the control as well as greater freedom for

the PSO to optimize. In implementing PSO, a penalty function method as defined in

equation (82) is used to construct the modified scalar cost function.

Due to the stochastic elements in the PSO algorithm, the random number gener-

ator seed is set to 0 in MATLAB R○ at the beginning of a simulation [68]. The random

number generation algorithm is left as the default ‘twister’ algorithm. This is used to

ensure results are repeatable by the user and by the reader. In addition, the cognitive

and social coefficients, 𝑐1, and 𝑐2, in the PSO algorithm are set to 1.49445 per recom-

mendations from Conway [6]. For PSO, optimality conditions are not checked; the

final solution is the global best candidate solution once the iteration count reaches

𝑘𝑚𝑎𝑥. The next section discusses NLP improvement on the PSOIGs.

3.1.3 NLP Improvement

The NLP solver used in this investigation is the function fmincon in the MATLAB R○

Optimization ToolBox. The function fmincon allows the user to supply the nonlinear

cost and nonlinear constraint function as well as choose the specific algorithm the

solver uses [68]. For the trajectories in this chapter, the “interior-point” algorithm is

chosen due to the number of design parameters that fmincon must handle. The choice

is based on recommendations found in the Mathworks “Choosing a Solver” documen-

tation stating that the interior-point algorithm “handles large, sparse problems, as

well as small dense problems” [72]. The PSOIGs are given to NLP by discretizing

the polynomial-based control time history and supplying the time parameters. The

NLP solver then optimizes the control time histories at each time increment. The

time step is initially set to be “reasonably” small such that the NLP solver is dealing

with approximately 100 design parameters.
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To increase the granularity of the resulting answers, a simple mesh refinement

scheme is used. The previously converged answer is doubled in size with the new

intermediate control values set equal to the average value of the two bordering control

values. The diagram in Figure 23 depicts the refinement strategy.
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( ) 

= ( ) 

( ) 

= +2    
= ( ) 

 

( ) 

Figure 23. Diagram of a grid refinement scheme

After a few iterations of grid refinement, the trajectories should have an acceptable

level of granularity. The size of the design parameters array tends to be on the

order of 103 and 104. The level of desired fidelity as well as allowable computation

time dictates the number of refinements completed. Due to the size of the problem

after a few iterations, solvers that are equipped to handle large sparse problems are

recommended. Using fmincon, the “interior-point” algorithm performs well; however,

another recommended solver for large problems, due to its exploitation of the sparse

matrices, is the Sparse Nonlinear Optimizer (SNOPT) [73]. Given an inevitably

sparse problem after grid refinement, gradient information is not manually provided

to fmincon for the trajectories in this chapter.

In employing fmincon, the function tolerance ‘FunTol’ and constraint tolerance
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‘ConTol’ are left at the default values of 10−6. The function tolerance and constraint

tolerance directly correspond to the tolerances that must be met for optimality. In

order to prevent premature termination of the function, the maximum function it-

erations ‘MaxFunIter’ is set to 10,000. The maximum number of function iterations

becomes relevant when the number of design parameters is on the order of 104. All

NLP improvements in this chapter are executed successfully with an fmincon exit flag

of 2. This error flag means that a local minimum is found such that the constraints

are satisfied to the designated constraint tolerance and a change in the free-variables

causes a change in the objective function smaller than the function tolerance.

3.2 Results

The results in this section are organized such that the TPBVP boundary condi-

tions are first presented followed by generation of the initial guess via PSO. Lastly,

the NLP improved solution is given. In order to provide a measure of the utility of

PSO for each test case, an effort to manually create a viable initial guess for the NLP

solver is attempted. The manually generated initial guesses are simple and are an

attempt to model default values that may be used by a designer. In certain instances,

a previously generated NLP solution from a simpler case is input as the initial guess.

The test cases are conducted in the following order:

1. Continuous low-thrust LEO to GEO planar transfer

2. Low-thrust multiple-burn LEO to GEO planar transfer

3. Continuous low-thrust LEO to GEO non-coplanar transfer

4. Continuous low-thrust LEO to GEO non-coplanar transfer with oblate Earth

effects
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5. Low-thrust multiple-burn LEO to GEO non-coplanar transfer with oblate Earth

effects

The test cases are constructed to gradually increase the complexity of the transfers.

This serves the purpose of systematically testing the limits of PSO. A comparison of

the continuous low-thrust LEO to GEO non-coplanar transfers with and without

oblate Earth affects is provided. Lastly, trajectories are compared in terms of fuel

usage against the very-low-thrust and impulsive burn equivalent transfers. As global

optimality is not guaranteed in this investigation, all results can only be labeled as

“locally optimal” to the initial guess provided to the NLP solver.

3.2.1 Continuous Thrust Planar LEO to GEO Transfer

The first test case is the simplest as it is a low-thrust continuous transfer from

LEO to GEO. Since the trajectory is between two coplanar, equatorial orbits, the

control time history only requires the in-plane angle 𝛼. The initial and terminal

conditions are given in Table 6. The satellite is propagated using the equations in

(92). The next section discusses PSOIG generation given these boundary conditions.

Table 6. Initial and terminal conditions for LEO to GEO coplanar transfer

Initial Conditions Terminal Conditions

𝑟 (km) 6,678.137 42,164

𝑉𝑟 (km/s) 0 0

𝑉𝜃 (km/s) 7.7257 3.0747

𝑒 0 0

𝑖 (deg) 0 0
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3.2.1.1 PSO Initial Guess Generation

To generate the initial guess with PSO, the pointing angle time history 𝛼(𝑡) is

segmented into five fourth-order polynomials. Each of the polynomials spans twenty-

six time steps. Employing the Runge-Kutta integration scheme introduced in section

2.3.4, twenty-six time-steps corresponds to 182 control point insertions. Across all

five polynomials, 910 independent control parameters are used in the numerical in-

tegration of the trajectory. With each fourth-order polynomial consisting of five

coefficients, twenty-five polynomial coefficients are to be optimized. In addition to

the polynomial coefficients, the parameter array 𝑃 contains the time of flight 𝑡𝑓 . A

total of twenty-six parameters make up the free-variable array.

𝑃 =

[︂
𝑘11 𝑘12 𝑘13 𝑘14 𝑘15 · · · 𝑘55 𝑡𝑓

]︂𝑇
(102)

The bounds on the polynomial coefficients are set by equation (101), and the

time of flight must be between 1 and 100 TU (1 TU = 14.41 minutes). The equality

constraints enforced in the trajectory are

𝜑(𝑥𝑖,𝑘) =

⎡⎢⎢⎢⎢⎣
𝑉𝑟(𝑡𝑓 )

𝑉𝜃(𝑡𝑓 )−
√︁

𝜇
𝑟2

𝑟(𝑡𝑓 )− 𝑟2

⎤⎥⎥⎥⎥⎦ = 0 (103)

where 𝑟2 is the final orbit radius of 42,164 km. The constraints are set up so that the

terminal conditions correspond to a circular orbit of the correct radius. Given the

constraints, the modified scalar cost function, 𝐽 , being minimized is defined as the

following

𝐽 = ‖𝜑1‖+ ‖𝜑2‖+ ‖𝜑3‖+ 0.01𝑡𝑓 (104)

96



The coefficient for 𝑡𝑓 was experimented with until reasonable results were gener-

ated. A small coefficient is needed in order to scale the time of flight so that it is

on the same order of magnitude as the constraints. A high time of flight coefficient

yielded a minimized time of flight with a complete disregard by the optimizer to sat-

isfying the constraints. The resulting PSOIG using 100 particles (𝑁𝑝) and 1,000 max

iterations (𝑘𝑚𝑎𝑥) is shown in Figure 24.
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Figure 24. PSO generated continuous thrust, LEO to GEO, coplanar transfer, 0.639
day transfer (black arrows correspond to thrust pointing directions)

The small black arrows denote the pointing angle measured with respect to the

local horizon at the time corresponding to the point at the base of the arrow. The

larger black arrowheads in all of the plots in this investigation are used to indicate

the direction of motion of the spacecraft. The pointing angle qualitatively depicts

oscillatory behavior, though the discontinuities at the end-points of the polynomials

significantly affect the smoothness of the control history. The next section discusses

NLP improvement on this initial guess and presents the results.
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3.2.1.2 NLP Improvement

In order to pass the PSOIG into fmincon, the number of discretized segments is

set equal to 100. Using the polynomial coefficients, the control value corresponding

to the times at each of the 100 increments is calculated using equation (99). With

the control values and the time of flight from PSO, the initial guess 𝑃 takes on the

form of a 101× 1 array below

𝑃 =

[︂
𝑢𝑡1 𝑢𝑡2 𝑢𝑡3 · · · 𝑢𝑡100 𝑡𝑓

]︂𝑇
(105)

The bounds on the pointing angle are now narrower and must lie between ±90

degrees. The same bound of 1 to 100 TU on time of flight is still enforced. The

function fmincon is well equipped to handle constraints, and as such, the constraints

and cost function can be handled independently. The equality constraint vector takes

on the same form as in equation (103) and the cost function being minimized is simply

𝐽 = 𝑡𝑓 (106)

In order to prevent a singular arc issue, path constraints are also added as a

separate inequality constraint array. The inequality constraints are formulated such

that the time rate of change of the control does not exceed a certain value. In this

investigation, thirty degrees per second is set as the maximum. Thirty degrees per

second is chosen because this is faster than a typical spacecraft rotation rate, and

sufficiently bounds the rate of change of the control [74]. To enforce this constraint,

the rate of change between each supplied control value is calculated by dividing the

difference in two sequential control values by the change in time. It is important

to note that the time step between controls is one-seventh the time step between

states given a three-step RK integration scheme. The inequality constraint vector is
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a separately defined array in fmincon and takes on the form below.

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�̇�1

�̇�2
...

�̇�𝑡𝑓

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≤ 30 deg/s (107)

After supplying the PSOIG to fmincon and after successful convergence designated

by an exit flag of 2, the fidelity of the trajectory is increased using the continuation

scheme in Section 3.1.3. The resulting trajectory and the pointing angle time history

are shown in Figure 25 and Figure 26, respectively.
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Figure 25. NLP improved continuous thrust, LEO to GEO, planar transfer, 0.607 day
transfer (black arrows correspond to thrust pointing directions)

The optimal continuous pointing angle is oscillatory with a frequency correspond-

ing to the period of each subsequent revolution. This is exemplified by comparing

the approximately 3.5 revolutions in the trajectory to the roughly 3.5 periods in the

control. Also, it appears the amplitude of the pointing angle grows with each rev-
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Figure 26. Control time history and osculating elements for NLP improved continuous
thrust, LEO to GEO, planar transfer

olution, with a final oscillation attaining nearly 80 degrees. The amplitude of the

oscillations in the control is a visual depiction of the level of inefficiency in the tra-

jectory. The inefficiency can be explained by examining the instantaneous COEs,

or osculating orbital elements. The time histories of the COEs show that the ec-

centricity of the transfer remains near zero for the first three revolutions and then

increases dramatically when the satellite is nearing the target altitude. Ideally, the

eccentricity would remain zero for the entire trajectory and the performance in terms

of Δ𝑉 would approach that of Edelbaum’s very-low-thrust spiral transfer. Using

Edelbaum’s equation for the Δ𝑉 between these orbit sizes yields an optimal transfer

at 4.65 km/s with a time of flight (assuming 𝑛0 = 0.001𝑔) of 53.8 days. However,

the optimal continuous-thrust transfer at this acceleration level (𝑛0 = 0.01𝑔) is 0.608

days with a Δ𝑉 of 6.019 km/s. There is definitely a tradespace between Δ𝑉 and

time of flight when using continuous thrust and varying the thrust acceleration level.

As a form of results validation, the Δ𝑉 at this orbit transfer ratio as well as thrust
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acceleration level matches that of the results shown Vallado [52]. Also, a very similar

trajectory at the same thrust acceleration level is given in Conway [6].

The manual initial guess also supplied to fmincon to gauge the NLP convergence

window was an array of 0 degree 𝛼 angles. A guess-and-check method was required for

choosing a reasonable time of flight and time step size such that fmincon converged.

Conversely, PSO required user determination of appropriate constraint weighting. For

this simple trajectory, both courses of action required the same level of user effort

and yielded the same final trajectory.

3.2.2 Multiple-burn Planar LEO to GEO Transfer

The next test case relaxes the continuous-burn restriction and allows for inter-

mittent coast arcs between burn arcs. The trajectory is still between two coplanar,

equatorial orbits, and the control time history only requires the in-plane angle 𝛼. The

boundary conditions for the TPBVP are the same as in Table 6. The satellite is still

propagated using the same equations (92).

3.2.2.1 PSO Initial Guess Generation

For the PSOIG generation, the pointing angle time history, 𝛼(𝑡), is segmented

into five individual burn arcs. Each of the five polynomials defines the control for

an individual burn segment. The same amount of nodes and control inputs are used

as in the previous continuous-thrust example. The single time variable used in the

previous test case is now expanded into the times of each of the five burns as well

as the four coast arcs between them. A total of thirty-four parameters make up the

free-variable array.

𝑃 =

[︂
𝑘11 𝑘12 𝑘13 𝑘14 𝑘15 · · · 𝑘55 𝑇

]︂𝑇
(108)
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where 𝑇 is defined as

𝑇 =

[︂
𝑡𝑏1 𝑡𝑏2 · · · 𝑡𝑏5 𝑡𝑐1 𝑡𝑐2 · · · 𝑡𝑐5

]︂𝑇
(109)

The total burn time is a sum of all the burn times, 𝑡𝑏𝑖, and the total flight time is a

sum of all the burn times and coast times, 𝑡𝑐𝑖. The bounds on the pointing angles are

still defined by equation (101); however, an 𝑛𝑏 value of 5 must now be used. The burn

times and coast times are bounded between 0.0001 and 30 TU to allow for enough

variability in solutions, but also to prevent a single segment from dominating and

causing a collapse in all of the other arcs. The constraints are defined by equation

(103). The modified cost function is now a function of the constraints as well as the

total burn time, 𝑡𝑏𝑡, and total coast time, 𝑡𝑐𝑡.

𝐽 = ‖𝜑1‖+ ‖𝜑2‖+ ‖𝜑3‖+ 0.01𝑡𝑏𝑡 + 0.001𝑡𝑏𝑐 (110)

The 0.01 coefficient in front of the total burn time functions similarly to the

coefficient in front of the time of flight in the previous case; however, it is helpful to

factor in the total coast time into the modified cost with a smaller coefficient. This

is done to minimize superfluous coasting. In practice, the PSO algorithm, given the

modified cost function, seeks to minimize the burn time before minimizing the coast

time. The values of the constraint weighting coefficients were user-determined using

trial-and-error. The resulting PSOIG using 500 particles and 1,000 max iterations is

shown in Figure 27.

The pointing angle displays oscillatory behavior with discontinuities at the coast-

ing arcs. Even though four coast arcs were allotted, the converged trajectory only

uses two. It is interesting to note that the most inefficient portion of the previous

transfer, marked by the highest amplitude in the pointing angle, is now a coasting
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Figure 27. PSO generated multiple-burn, LEO to GEO, planar transfer, 0.773 day
transfer

segment. This implies that the inefficiency in the previous trajectory is best improved

upon by replacing the problem section with a coast arc. The next section discusses

NLP improvement of this guess and presents the locally optimal results.

3.2.2.2 NLP Improvement

Using the polynomial coefficients from the PSOIG, the control values correspond

to twenty-five time increments along each of the burns. This means that the time

step size for each burn depends on the length of the burn. Short burn segments have

smaller times steps and vice versa. With the control values and the burn and coast

segment durations included, the initial guess 𝑃 takes on the form of a 109× 1 array

below

𝑃 =

[︂
𝑢𝑡1 𝑢𝑡2 𝑢𝑡3 · · · 𝑢𝑡100 𝑇

]︂𝑇
(111)

The bounds are ±90 degrees for the control parameters and between 0.0001 and 30

TU for the burn and coast times. The definition of 𝑇 is given in equation (109) The

equality constraint equations remain the same from equation (103) and inequality

constraints, enforced along the burn arcs, are the same as in equation (107). The
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total time of flight is minimized in the scalar cost function 𝐽 .

𝐽 = 𝑡𝑏1 + 𝑡𝑏2 + · · ·+ 𝑡𝑏5 + 𝑡𝑐1 + 𝑡𝑐2 + · · ·+ 𝑡𝑐5 (112)

The converged trajectory, control time history, and osculating elements are shown

in Figures 28 and 29. The black arrows are removed from the finite-burn plots in

order to declutter the plot as well as allow the reader to better distinguish between

the burn and coast segments. The thrust pointing angle displays similar oscillatory

behavior to the continuous-thrust case; however, the amplitude of the oscillations are

much smaller. The solution uses three instead of the two coasting arcs used in the

PSOIG and burns for 0.479 days with a total flight time of 0.904 days. The Δ𝑉

significantly improved by 1.56 km/s from the continuous case to 4.457 km/s. This

is better than the Edelbaum very-low-thrust solution but is still worse in terms of

Δ𝑉 than the impulsive transfer that only requires 3.892 km/s. Ideally, an infinite

number of impulsive burns would be competed at the instantaneous perigee of each

revolution such that the orbit is very gradually raised. This hypothetical transfer

would approach the Δ𝑉 of the impulsive transfer. These results are consistent with

numbers predicted in Pelouch for a multi-burn transfer between LEO and GEO [54].

Many different non-PSOIGs were supplied to fmincon in order to gauge the sen-

sitivity of the problem as well as the convergence window. Supplying fmincon with

an initial guess equivalent to the converged continuous-thrust solution did not work

because the solver tended not to depart the given solution. However, when non-zero

values on the order of 1 TU were input for each of the coast durations, the solver was

able to converge on a very similar solution to that of Figure 28. Using the PSOIG,

a few iterations on the constraint coefficients in equation (110) were necessary be-

fore an acceptable initial guess was generated. Both methods are viable; however,

the non-PSOIG method built off of the solution from the previous test case. Such
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Figure 28. NLP improved multiple-burn, LEO to GEO, planar transfer, 0.904 day
transfer
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Figure 29. Control time history and osculating elements for NLP improved multiple-
burn, LEO to GEO, planar transfer
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a previously generated solution may not be available to the user depending on the

design scenario. Conversely, despite iteratively searching for acceptable constraint

coefficients, the PSOIG method does not require an initial guess for the motion of

the spacecraft.

3.2.3 Continuous Thrust Non-Coplanar LEO to GEO Transfer

For this next test case, out-of-plane motion is now added to the burns in order

to allow for inclination changes and for added complexity. The transfer starts at an

inclined LEO altitude orbit and terminates an at equatorial GEO altitude orbit. The

table below shows the initial and terminal conditions.

Table 7. Initial and terminal conditions for LEO to GEO non-coplanar transfer

Initial Conditions Terminal Conditions

𝑟 (km) 6,678.137 42,164

𝑉𝑟 (km/s) 0 0

𝑉𝜃 (km/s) 7.7257 3.0747

𝑒 0 0

𝑖 (deg) 28.5 0

An initial inclination of 28.5 degrees is chosen in order to simulate a launch from

Cape Canaveral to LEO where a post orbit insertion transfer to GEO is still required.

These non-coplanar transfers are conducted using MEEs due to the eventual inclusion

of 𝐽2. Table 8 shows the boundary conditions using MEEs.
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Table 8. Initial and terminal conditions for LEO to GEO non-coplanar transfer using
MEEs

Initial Conditions Terminal Conditions

𝑝 (km) 6,678.137 42,164

𝑓 (deg) 0 0

𝑔 (deg) 0 0

ℎ (deg) 0 0

𝑘 (deg) 14.551 0

𝐿 (deg) 0 Free

The 𝐿 parameter is left free as the position on the final orbit is not constrained.

The trajectories are propagated using the EOMs given in equation (95) with the

acceleration equal to 𝑎𝑇ℎ𝑟𝑢𝑠𝑡𝑒𝑟 when 𝐽2 is not included and equal to 𝑎𝑇ℎ𝑟𝑢𝑠𝑡𝑒𝑟 + 𝑎𝐽2

when it is included.

3.2.3.1 PSO Initial Guess Generation

To generate the initial guess using PSO, five fourth-order polynomials are still used

for 𝛼(𝑡); however, an additional five polynomials must be included to approximate

𝛽(𝑡). Each polynomial spans twenty-six time-steps, thus, with 182 control point

insertions and two control parameters at each step, there are now 1,820 independent

control parameters used in the numerical integration of the trajectory. Having ten

polynomials translates into fifty-one free-variables where the final parameter is the

time of flight. The 𝑃 array is defined as

𝑃 =

[︂
𝑘11 · · · 𝑘15 𝑘21 · · · 𝑘55 𝑞11 · · · 𝑞15 𝑞21 · · · 𝑞55 𝑡𝑓

]︂𝑇
(113)
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where 𝑞𝑛𝑗 is the 𝛽 angle polynomial coefficient corresponding the to 𝑛th polynomial

and the 𝑗th coefficient. The bounds on the coefficients are calculated using equa-

tion (101) with 𝑛𝑏 equal to 1 and 𝑡𝑓 bounded between 1 and 100 TU. The equality

constraints, after the transformation to MEEs, now take on the form

𝜑(𝑥𝑖,𝑘) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑝(𝑡𝑓 )− 𝑟2

𝑓(𝑡𝑓 )

𝑔(𝑡𝑓 )

ℎ(𝑡𝑓 )

𝑘(𝑡𝑓 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0 (114)

With the five boundary constraints defined, the modified cost function is defined very

similarly to equation (104).

𝐽 = ‖𝜑1‖+ ‖𝜑2‖+ ‖𝜑3‖+ ‖𝜑4‖+ ‖𝜑5‖+ 0.01𝑡𝑓 (115)

Again, the time of flight must be scaled down such that it is on the same order

of magnitude as the constraints. The resulting PSOIG using 100 particles and 1,000

max iterations is shown in 3-D in Figure 30. The 𝑥-𝑦 plane projection is shown in

Figure 31.

The black arrows in the 3-D view depict the spatial thrust pointing direction. In

the 𝑥-𝑦 view, the black arrows only depict the in-plane angle, 𝛼. The control time

histories in Figure 32 communicate a high volatility in the pointing angles. It is

difficult to discern the qualitative nature of the control time history; however, a large

𝛽 angle appears near the end of the trajectory.

Before conducting NLP improvement on the PSOIG, the same trajectory is solved

again with PSO, but with the inclusion of 𝑎𝐽2. The same methodology for the

previously generated guess is used; the resulting trajectory and control time history
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Figure 30. PSO generated continuous thrust, LEO to GEO, non-coplanar transfer, 3-D
view, 0.664 day transfer (black arrows correspond to thrust pointing directions)
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Figure 31. PSO generated continuous thrust, LEO to GEO, non-coplanar transfer, 𝑥-𝑦
view, 0.664 day transfer (black arrows correspond to thrust pointing directions)
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Figure 32. Control time history for PSO generated continuous thrust, LEO to GEO,
non-coplanar transfer

are shown in Figures 33, 34, and 35. The results are similar to those of the non-𝐽2

PSOIG; however, the oscillatory nature of the pointing angles is more discernible in

this case. A large 𝛼 and 𝛽 angle is required near the termination of the trajectory.

The two PSOIGs are given to the NLP solver for improvement in the next section.
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Figure 33. PSO generated continuous thrust, LEO to GEO, non-coplanar transfer
with J2 perturbation, 3-D view, 0.654 day transfer (black arrows correspond to thrust
pointing directions)
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Figure 34. PSO generated continuous thrust, LEO to GEO, non-coplanar transfer
with J2 perturbation, 𝑥-𝑦 view, 0.654 day transfer (black arrows correspond to thrust
pointing directions)
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Figure 35. Control time history for PSO generated continuous thrust, LEO to GEO,
non-coplanar transfer with J2 perturbation
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3.2.3.2 NLP Improvement

Passing the PSOIG for improvement to fmincon now requires handling both the

in-plane and out-of-plane control time histories. After calculating the control values

for each time increment using the PSOIG polynomials coefficients, the parameter

array 𝑃 takes on a similar form to equation (105), but with 100 in-plane and 100

out-of-plane variables, denoted 𝑢𝑡 and 𝑤𝑡, respectively. The control parameters are

then followed by 𝑡𝑓 in the parameter array.

𝑃 =

[︂
𝑢𝑡1 𝑢𝑡2 · · · 𝑢𝑡100 𝑤𝑡1 𝑤𝑡2 · · · 𝑤𝑡100 𝑡𝑓

]︂𝑇
(116)

The bounds are ±90 degrees for the control parameters and between 1 and 100

TU for burn time. The cost function is still to minimize 𝑡𝑓 and the path constraints

are enforced such that �̇�𝑡 remains less than or equal to thirty degrees per second. The

equality constraints are defined by equation (114). After successful convergence and

increasing the fidelity of the transfers, the resulting trajectory without 𝐽2 is shown in

Figures 36, 37, and 38.

The converged trajectory has a time of flight of 0.65 days, which results in a Δ𝑉

of 6.247 km/s. From the 3-D view, it is easy to discern the 28.5 degree inclination

of the initial orbit. Also, it appears that the addition of an inclination change from

LEO to GEO does not significantly affect the in-plane pointing when compared to the

planar transfers nor is there a large difference in time of flight. As a result, the Δ𝑉

increase from the planar trajectory is on the order of 200 m/s. Using a combined plane

change at the second impulse in a two-impulse maneuver, the associated cost for just

changing the inclination is 363 m/s. An explanation as to why the continuous thrust

transfer requires less Δ𝑉 than the impulsive optimum for the inclination change is

that the excess in-plane thrust is diverted into the required out-of-plane corrections.

This would effectively lower the required max amplitude of the in-plane angle as well
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Figure 36. NLP improved continuous thrust, LEO to GEO, non-coplanar transfer, 3-D
view, 0.650 day transfer (black arrows correspond to thrust pointing directions)
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Figure 37. NLP improved continuous thrust, LEO to GEO, non-coplanar transfer, 𝑥-𝑦
view, 0.650 day transfer (black arrows correspond to thrust pointing directions)
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Figure 38. Control time history and osculating elements for NLP improved continuous
thrust, LEO to GEO, non-coplanar transfer

as lower the cost of the plane change. These results are validated by an equivalent

transfer conducted in Herman [75]. The NLP improved trajectory including the 𝐽2

perturbation is shown in Figures 39, 40, and 41.

As expected, the inclusion of 𝐽2 only slightly changes the optimal trajectory. In-

terestingly, the required Δ𝑉 is decreased by 18 m/s compared to the transfer without

𝐽2. A comparison of the osculating elements for both transfers is shown in Figure 42.

The deviations in the optimal trajectories due to the inclusion of 𝐽2 is mostly seen

during the highest rates of change of the COEs. This is likely a result of the minor

deviations in the models building up to be corrected in the “fast” portion or period

of greatest variation in the COEs as well as the control amplitudes.

Manually creating an initial guess to supply to fmincon in this scenario was very

difficult without using the PSOIG. Previous techniques of using zeroed control time

histories and guessing at the time of flight did not work. The system was also very

sensitive to the step size used. If a step size below 1.5 TU or greater than 2 TU
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Figure 39. NLP improved continuous thrust, LEO to GEO, non-coplanar transfer
with J2 perturbation, 3-D view, 0.624 day transfer (black arrows correspond to thrust
pointing directions)
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Figure 40. NLP improved continuous thrust, LEO to GEO, non-coplanar transfer
with J2 perturbation, 𝑥-𝑦 view, 0.624 day transfer (black arrows correspond to thrust
pointing directions)
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Figure 41. Control time history and osculating elements for NLP improved continuous
thrust, LEO to GEO, non-coplanar transfer with J2 perturbation
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Figure 42. Comparison of osculating elements between NLP improved continuous
thrust, LEO to GEO, non-coplanar transfers with and without J2 perturbation effects.
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with zeroed control time histories was used as an initial guess, the NLP solver did

not converge. The benefit of using the PSOIG was definitely seen in this test case.

However, doubling the problem size due to an additional pointing angle affected PSO

in that the initial guesses were not as close to the locally optimal solution. Even with

PSO showing signs of being over-encumbered by a highly dimensioned search space,

the initial guesses were still within the NLP convergence window.

3.2.4 Multiple-burn Non-Coplanar LEO to GEO Transfer

3.2.4.1 PSO Initial Guess Generation

This final scenario provides the highest level of complexity in this chapter as spatial

motion, finite burns, and 𝐽2 are all incorporated. Just as in the planar case, relaxing

the continuous thrust constraint manifests itself as the addition of time parameters to

define the duration of sequential burning and coasting arcs. With ten polynomials, five

for the in-plane control and five for the out-of-plane control, each spanning twenty-

six time steps, the PSO now needs to optimize a 𝑃 of fifty-nine parameters. The

constraints are defined by equation (114) and the bounds are defined by equation

(101) where 𝑛𝑠 is 5. The burn and coast times must be between 0.0001 and 30

TU. Lastly, the modified cost function is equivalent to equation (115). Optimizing

the non-coplanar multiple-burn trajectory via PSO using 1,000 particles and 1,000

iterations yields the results in Figures 43, 44, and 45.

The thrust pointing angle is near continuous with very short coast arcs. Assuming

the optimal solution takes advantage of larger coast arcs, it appears PSO is showing

signs of difficulty with the dimension of search space. Even though the oscillatory

behavior of the pointing angles is present, the trajectory does not improve upon the

continuous thrust case with an increase in Δ𝑉 from 6.6295 km/s to 7.874 km/s.

Higher iterations or a greater number of particles could be used, but at a greater
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Figure 43. PSO generated multi-burn, LEO to GEO, non-coplanar transfer with J2
perturbation, 3-D view, 0.785 day transfer
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Figure 44. PSO generated multi-burn, LEO to GEO, non-coplanar transfer with J2
perturbation, 𝑥-𝑦 view, 0.785 day transfer
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Figure 45. Control time history for PSO generated multiple-burn, LEO to GEO, non-
coplanar transfer with J2 perturbation

computation cost. This sub-optimal initial guess is provided to the NLP solver and

is still within the convergence window of the NLP solver.

3.2.4.2 NLP Improvement

The NLP improvement follows closely with previous methodology. The parameter

array 𝑃 is very similar to equation (111) with the addition of the out-of-plane 𝑤𝑡

values at each of the time increments.

𝑃 =

[︂
𝑢𝑡1 𝑢𝑡2 · · · 𝑢𝑡100 𝑤𝑡1 𝑤𝑡2 · · · 𝑤𝑡100 𝑇

]︂𝑇
(117)

The bounds are ±90 degrees for the control parameters and between 0.0001 and

30 TU for the burn and coast times. The constraints are equivalent to equation

(114), and the scalar cost function is equal to the total time of flight. The converged

trajectory given the previously generated PSOIG is shown in Figures 46, 47, 48.

The level of fidelity is noticeably less than those of the previous NLP improve-

ments. Even though the continuation scheme was conducted, due to the size of the

problem, increasing the granularity of the plot could not be done while still yielding

an fmincon exit flag of 2. The amount of iterations and function evaluations allowed
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Figure 46. NLP improved multiple-burn, LEO to GEO, non-coplanar transfer with J2
perturbation, 3-D view, 0.802 day transfer
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Figure 47. NLP improved multi-burn, LEO to GEO, non-coplanar transfer with J2
perturbation, 𝑥-𝑦 view, 0.802 day transfer
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Figure 48. Control time history and osculating elements for NLP improved multiple-
burn, LEO to GEO, non-coplanar transfer with J2 perturbation

could have been increased, but doing so would have been computationally expensive.

The lower fidelity plot after successful convergence is presented instead.

The results show an improvement in Δ𝑉 from the continuous thrust non-coplanar

transfer. This trajectory requires 0.513 days of burn time and lasts 0.802 days total.

The burn time translates into 4.85 km/s, down from the 6.22 km/s of the continuous

thrust transfer. The transfer only utilizes two coasting arcs, which is a local optimum

given the supplied PSOIG that only has one significant coast.

For this case, successful convergence was also acquired using the continuous thrust

trajectory as an initial guess. This technique, however, takes advantage of knowledge

gained from a previously conducted optimization scenario. Arguably, PSO performs

well with little to no knowledge about the optimal trajectory required.
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3.2.5 Practicality of the Trajectories

The methodology employed demonstrated success in calculating locally optimal

minimum-fuel trajectories. A valid question is to then ask: how practical are these

trajectories to actually fly? To aid in the following analysis, Table 9 provides the

quantitative characteristics of all of the calculated trajectories as well as the equivalent

analytical optimum solutions for the very-low-thrust and impulsive thrust levels.

The table, in addition to the burn time, time of flight, and the Δ𝑉 of the converged

trajectories, provides the mass fraction, 𝑚𝑓/𝑚0, and propellant mass, 𝑚𝑝, required to

conduct the transfer assuming a 3,000 kg final mass and the 𝐼𝑠𝑝 corresponding to the

thrust acceleration level (𝑛0 = 0.01𝑔). The 3,000 kg final mass is an assumed on-orbit

final mass for a typical GPS satellite. In other words, this mass is the final mass,

𝑚𝑓 , once the spacecraft has reached its final mission altitude. Actual payload mass

insertion can be calculated using an assumed propulsion mass structural factor of 10%,

meaning that the satellite payload mass to GEO is 2,700 kg [76]. The final column

of the table gives the required orbit insertion mass, 𝑚𝑠0, that the launch vehicle

must provide to LEO in order to guarantee a 2,700 kg payload mass to GEO given

the required propellant mass for the trajectory. For the coplanar and non-coplanar

sets of test cases, the very-low-thrust transfer is continuously burning whereas the

impulsive transfer is calculated using a Hohmann transfer or combined plane change.

The 𝐼𝑠𝑝 values for the analytic optimal solutions are typical for a high efficiency ion

thruster (10,000 s) or an on-board chemical propellant system (300 s). The PSO and

NLP solvers all used the same performance levels of 𝑛0=0.01g and 𝐼𝑠𝑝=1181 s.

The results show that forcing the spacecraft to thrust continuously is sub-optimal

at the 0.01g thrust level. When finite burns are allowed, the Δ𝑉 drops to less than

that of the very-low-thrust case, but is still surpassed by the impulsive transfer. More

indicative of the fuel-efficiency, the mass fraction shows that using the 0.01g level of
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Table 9. Low-thrust transfers comparison

Scenario/Solver Burn Time (days) Transfer Time (days) Δ𝑉 (km/s) 𝑚𝑓/𝑚0 𝑚𝑝 (kg) 𝑚𝑠0 (kg)

Continuous, Δ𝑖 = 0∘

PSO 0.6393 0.6393 6.4338 0.5739 2,226 5,226
NLP 0.6079 0.6079 6.0192 0.5948 2,043 5,043

Finite, Δ𝑖 = 0∘

PSO 0.5055 0.7730 4.7607 0.6631 1,524 4,524
NLP 0.4791 0.9039 4.4573 0.6807 1,407 4,407

Very-low-thrust (𝑛0=0.001, 𝐼𝑠𝑝=10,000) 53.832 53.832 4.6510 0.9537 146 3,145
Impulsive-two-burn (𝐼𝑠𝑝=300) - 0.2198 3.8926 0.2664 8,260 11,260

Continuous, Δ𝑖 = 28.5∘

PSO 0.6638 0.6638 6.7673 0.5577 2,379 5,379
NLP 0.6503 0.6503 6.2468 0.5833 2,143 5,143

Continuous, Δ𝑖 = 28.5∘ , J2
PSO 0.6537 0.6537 6.6295 0.5643 2,315 5,315
NLP 0.6239 0.6239 6.2290 0.5842 2,135 5,135

Finite, Δ𝑖 = 28.5∘ , J2
PSO 0.7392 0.7849 7.8746 0.5068 2,918 5,918
NLP 0.5133 0.8015 4.8517 0.6579 1,559 4,559

Very-low-thrust (𝑛0=0.001, 𝐼𝑠𝑝=10,000) 68.8755 68.8755 5.9508 0.9411 187 3,187
Impulsive-combined (𝐼𝑠𝑝=300) - 0.2198 4.2559 0.2354 9,739 12,739
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thrust acceleration keeps the transfers below one day and requires significantly less

propellant than the impulsive transfers. While the best mass fractions are gained

by using a very-low-thrust spiral transfer, the transfers takes upwards of 50 days to

complete. If a reasonable level of fuel-efficiency as well as transfer speed is desired,

then thrust acceleration levels around 0.01g are an acceptable option.

For a typical payload that is sent to GEO, the launch vehicle does not drop the

payload off at LEO. Instead, a geosynchronous transfer orbit (GTO) is used as the

initial parking orbit. A GTO is a highly elliptical orbit that typically has a low perigee

altitude of a few hundred kilometers and an apogee at GEO altitude. For impulsive

GTO to GEO transfers, the Δ𝑉 is about 1.5 km/s for the planar transfer and 1.8

km/s for the 28.5 deg non-coplanar transfer. Compared to the 3.89 km/s required for

an impulsive LEO to GEO transfer, the GTO to GEO insertion system is required

to provide 2.5 km/s lower in terms of Δ𝑉 to reach the final orbit. Naturally, the

Δ𝑉 disparity is incurred by the launch vehicle, but it has been shown to be more

efficient in terms of fuel used by the launch vehicle to use a GTO to GEO boost

stage instead of a boost stage from LEO [76]. Using the GTO to GEO Δ𝑉 s in

conjunction with a chemical propulsion system having an 𝐼𝑠𝑝 of 300 s, the propellant

masses required for the coplanar and non-coplanar case are 1,994 kg and 2,530 kg,

respectively. Comparing these numbers to the NLP solutions for the LEO to GEO

finite low-thrust planar and non-coplanar transfers, the required propellant masses

are lower at 1,407 kg and 1,559 kg, respectively. This implies that the same payload,

assuming the low-thrust and impulsive-thrust propulsion systems are the same mass,

can reach GEO for less propellant starting at a less expensive parking orbit for the

launch vehicle. The conclusion that low-thrust when compared to impulsive thrust

is more fuel efficient is not new; however, in terms of practicality, the finite low-

thrust LEO to GEO transfers are feasible options. This is based on the fact that
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approximately 1,500 kg of propellant used by a boost stage to insert a 2,700 kg

payload to GEO is feasible with current technology. Also, compared to the 𝑚𝑠0

column in Table 9, launch vehicles are able to easily provide upwards of 9,000 kg to

LEO [77,78]. In fact, in terms of possible masses to LEO given current launch vehicle

technology, all of the required initial masses are feasible. However, feasibility does

not dictate practicality. For the most practical option in terms of fuel usage and time

of flight, a GTO-GEO finite burn transfer using low-thrust should be conducted.

This combines the benefit of a higher energy parking orbit with the fuel efficiency

of low-thrust propulsion. This particular transfer is not considered for optimization

in the current investigation, but is foreseeably straightforward to conduct given the

proposed methodology.

Up to this point, very-low-thrust options have not been discussed. If the user is

willing to wait fifty or more days for final orbit insertion, then haste is not a concern.

However, given a starting point in LEO, the very-low-thrust satellite must gradually

conduct the orbit raising and inclination change over hundreds of revolutions. Other

concerns such as extended time in the Van Allen radiation belts as well as power

capabilities for constant thrusting become much more relevant. It may be worthwhile

to investigate hardening the satellite to radiation as well as having a robust on-

board power system to employ very-low-thrust options for the orbit transfer phase

of the mission. Also, using a very-low-thrust acceleration level starting from GTO

may provide a more acceptable time of flight while still gaining the very high fuel

efficiency. Overall, the conclusion is that, for GEO based satellites, using a GTO

parking orbit is the most practical to relieve the propulsive burden on the satellites.

Also, finite burn transfers at low-thrust offer a middle ground between fuel efficiency

and time of flight.
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3.3 Chapter Summary

This chapter provided the methodology and results for multiple near-Earth LEO

to GEO low-thrust transfers. Due to the fact that PSO operates best when opti-

mizing a small amount of design variables, a polynomial-based approach was used to

approximate the optimal continuous time history of the thrust pointing angles for each

trajectory. All of the PSOIGs given to the NLP solver were within the convergence

window with most of the initial guesses being relatively close to the locally optimal

solution. The LEO to GEO transfers, while not the most practical, did elucidate

the benefits of using low-thrust as well as finite burning. A more practical transfer

and an avenue for future work would be to apply the methodology in this chapter to

low-thrust GTO to GEO transfers.

For the first several cases, learning how to weigh the constraints vs. the time of

flight or burn time and coast time proved to be the factor that required the most user

experimentation. In other instances, increasing the number of particles or iterations

was done if the desired level of convergence was not met. For the continuous, planar

trajectory, supplying fmincon with an acceptable non-PSOIG was relatively easy and

only required a few changes to the step size. Manual creation of the initial guess

for the finite-burn and non-coplanar trajectories required more finesse. While PSO

demonstrated the ability to generate a “good-enough” initial guess for all of the

scenarios, once the number of design parameters reached fifty or more, it was difficult

to generate an initial guess that was in close proximity to the final converged solution.

More effort could have been made to allow for longer run times with larger swarms;

however, keeping the computation time within one hour for the PSOIG was desired.

As a final note, the transfers generated in this chapter are not claimed to be globally

optimal, but local to the PSOIG supplied to the NLP solver.

The next chapter seeks to test the efficacy of PSO as a means for initial guess
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generation by subjecting it to a highly nonlinear dynamical environment in which

chaos is present, the CR3BP.
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4. Impulsive High-Altitude Trajectory Design

When operating at altitudes higher than GEO, the effects of the Moon’s gravity

become much more significant. Modeling the Moon’s gravity as a small perturbation

much like the inclusion of 𝐽2 in the previous chapter is a valid approach for altitudes up

to GEO, but greater accuracy and insight may be gained by transitioning into a three-

body model for super-GEO altitudes. The circular restricted three-body model is used

as the dynamical environment for the methods and trajectory design showcased in

this chapter due to a focus on very-high-altitude operations. Apart from the accuracy

gained by using this model at super-GEO altitudes, the range of possible behavior is

also expanded. The trajectories that result from numerically integrating the CR3BP

equations of motion are not Keplerian as they exhibit a high level of nonlinearity and

may exist in regions of the phase space where chaos is present. Designing in this

complex dynamical environment is difficult and as such, an initial guess for a desired

transfer is not always readily available due to the lack of a closed-form analytical

solution for the CR3BP. PSO plays the role of initial guess generation in the design

approach employed in this chapter.

The methodology presented in this chapter first utilizes a differential corrections

method for numerically solving TPBVPs in the CR3BP. Using this approach, periodic

solutions are calculated using targeting and PSO. Finally, dynamical systems theory

is applied with a focus on invariant manifolds associated with periodic orbits near the

Earth-Moon L1 Lagrange point. The results section presents the design of a three-

impulse trajectory from low-Earth-altitude (300 km) to a libration point orbit (LPO)

about the Earth-Moon L1 equilibrium point. A segment of the trajectory takes place

on an approximation for a stable manifold trajectory in order to efficiently approach

the target LPO. Lastly, it is important to emphasize that the present chapter only

explores motion in the planar (𝑥-𝑦) CR3BP.
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4.1 Methodology

This section covers targeting periodic orbits, identifies the particular invariant

manifold emanating from the design LPO, and details the methods used in the current

investigation for PSOIG generation and NLP improvement in the CR3BP.

All states,𝑋, in this chapter are propagated via the EOMs given by the system of

equations (33). The numerical integration is conducted using MATLAB R○’s built-in

ordinary differential equations (ODE) solver, ode45. The solver is a one-step, fourth-

order, fifth-order corrections, Runge-Kutta integrator. ode45 benefits from a variable

step size whereas the Runge-Kutta integration in the previous chapter uses a fixed

step. A variable step size is advantageous in regions of the phase space that are

sensitive or chaotic because the time step can be decreased to maintain accuracy.

A variable step size also provides faster computation for less chaotic regions where

increasing the step does not introduce significant error. The relative tolerance ‘RelTol’

and absolute tolerance ‘AbsTol’ in the odeset options are both set to 10−13 for the

numerical integration conducted in this chapter. This level of fidelity corresponds

to meter accuracy in position and sub-mm/s accuracy in velocity, a necessity when

operating in a chaotic environment. For additional documentation on the ODE solvers

in MATLAB R○, reference Shampine and Reichelt [79].

For each simulation in the present chapter, the elapsed computation time ranges

from a few minutes for each PSO solved TPBVP to no more than an hour for NLP im-

provement. The times correspond to elapsed time in MATLAB R○ (Version: 8.1.0.605

(R2013a); benchmark: 0.2930, 0.3178, 0.2058, 0.3201, 0.6751, 0.5911) [68]. Also, the

computer used runs a 64-bit Windows 7 operating system with 4GB of RAM and an

Intel(R) Celeron(R) CPU E3400 @2.60 GHz processor.
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4.1.1 Targeting Periodic Orbits

In the CR3BP an infinite number of periodic orbits can be computed. Periodic,

in this context, means that after a finite amount of time the spacecraft, given an

initial condition, returns to the same initial conditions in both position and velocity

within a satisfactory tolerance. Periodic orbits of particular interest are those near

the Lagrange points. To target a periodic orbit about one of the collinear libration

points, an interesting symmetry can be exploited. For every trajectory there is a

mirror image trajectory across the 𝑥-𝑧 plane that runs in negative time [80]. Using

this knowledge, starting on the 𝑥-𝑧 plane with velocity solely in the 𝑦 direction and

targeting the next perpendicular crossing of the 𝑥-axis results in half of a periodic

orbit. The remaining half can be found by reflecting the current half across the 𝑥-𝑧

plane.

For an initial guess of the LPO, a linear approximation is found in Szebehely

[24]. Using this approach for motion near L1 in the planar CR3BP, the initial state,

𝑋𝐿𝑃𝑂(𝑡0), is given below in nondimensional and dimensional units in the barycentric

rotating frame.

𝑋𝐿𝑃𝑂(𝑡0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑥0

𝑦0

�̇�0

�̇�0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.846915121142417

0

0

−0.083722733189462

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

325, 554.172567146 km

0 km

0 km/s

−0.081716841593909 km/s

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(118)

The initial conditions correspond to an initial condition between L1 and the Moon

on the 𝑥-axis with a perpendicular crossing in the negative 𝑦 direction. Targeting the

next perpendicular crossing with the 𝑥-axis requires that the initial velocity in the 𝑦

direction be variable in addition to time. The error that is being minimized consists
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of the final 𝑦 position and final velocity in the 𝑥 direction. Thus, the constraint or

error vector 𝐹 (𝑋) is written below.

𝐹 (𝑋) =

⎡⎢⎣ 𝑦(𝑡𝑓 )

�̇�(𝑡𝑓 )

⎤⎥⎦ = 0 (119)

Constructing the 𝐷𝐹 matrix results in the square matrix (𝑛 = 𝑚 = 2) below.

𝐷𝐹 (𝑋) =

⎡⎢⎣ 𝜕𝑦
𝜕�̇�0

�̇�

𝜕�̇�
𝜕�̇�0

�̈�

⎤⎥⎦ (120)

Since the 𝐷𝐹 matrix is square, equation (52) can be used as the update equation.

It is worth noting that the elements in the first column can be extracted from the

STM. For an initial guess for time, the time associated with first 𝑥-axis crossing

(𝑡 = 5.515117 days) is used. An event function within ode45 is employed to ensure

that the numerical integration stops at the 𝑥-axis. Given the event function, time

updates are ignored in this differential corrections process. The convergence tolerance

for the corrections scheme, 𝜖, is set to 10−13. Figure 49 shows the convergence behavior

for targeting half of the periodic orbit.

The numbers at the end of the individual arcs correspond to the current iteration

where the first iteration is 0. As shown in Figure 49, the first and second iterations

are not perfect perpendicular crossings; however, starting at the fourth iteration,

differentiating between the iterations becomes difficult as only minor corrections are

subsequently made. To generate the remaining half of the periodic orbit, a reflection

across the 𝑥-𝑧 plane is made resulting in the LPO shown in Figure 50.

The period of the targeted LPO is 5.515117 days. The L1 Lyapunov orbit can

also be calculated accurately via PSO. Using the initial state in equation (118), PSO

is set up to optimize the initial velocity and time. The cost function evaluated at
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Figure 49. Targeting a planar periodic orbit near L1 in nondimensional rotating
barycentric frame
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Figure 50. One revolution of the targeted planar periodic orbit near L1 in nondimen-
sional rotating barycentric frame
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each iteration is given in equation (121).

𝐽(𝑃 ) = 𝑥(𝑡𝑓 )− 𝑥(𝑡0) + 𝑉𝑥(𝑡𝑓 ) (121)

where

𝑃 =

⎡⎢⎣ 𝑉𝑥(𝑡𝑜)

𝑡𝑓

⎤⎥⎦ (122)

and ⎡⎢⎣ −0.01

1

⎤⎥⎦ ≤ 𝑃 ≤

⎡⎢⎣ −1

3

⎤⎥⎦ (123)

The cost function 𝐽 is minimized for a periodic orbit after one revolution with a

perpendicular crossing at the 𝑥-axis. The bounds are set such that the PSO does not

converge on a solution with minimal displacement from the initial condition and is

within a reasonable range of 𝐶 values for the LPO. Also, constraint weighting is not

used due to an already well-conditioned and low-dimensioned search space. Figure

51 shows the convergence behavior of 30 particles in 100 iterations. The presented

LPO is used as the final target orbit for the three impulse trajectory designed in this

chapter.

In the CR3BP, periodic orbits exist in families. If a different periodic orbit is

desired, a continuation scheme can be used to generate more members from the same

orbit family. For this particular planar family, stepping in the 𝑥 direction from the

previous initial condition and using the initial velocity from the previous LPO as an

initial guess allows the targeting scheme to converge on a new family member. The

step in the 𝑥 direction cannot be too large or else the targeter may have difficulty

converging. Conversely, a very small step size can be computationally expensive if

a range of family members is desired. This continuation scheme is used to generate

twenty neighboring periodic orbits within the same L1 Lyapunov family. All twenty-
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Figure 51. PSO convergence on LPO for 30 particles and 100 iterations

one L1 Lyapunov family members are shown in Figure 52. The next section exploits

dynamical systems theory in order to generate an approximation for the invariant

stable manifold tube emanating from the first LPO targeted in this section.

4.1.2 LPO Invariant Manifold

The trajectory designed and presented in Section 4.2 employs a coast arc on an

approximation for an invariant stable manifold trajectory approaching an unstable

LPO about L1. A coast segment on the invariant manifold is motivated by an ex-

pected efficiency when following the natural dynamical “flow” in a model. In other

words, invariant manifold trajectories represent “free” transfers (zero Δ𝑉 ) to and

from periodic orbits in infinite time due to their asymptotic behavior. Using approx-

imations of the invariant manifold slightly increases the required Δ𝑉 , but allows the

LPO approach phase to be conducted in a reasonable amount of time. The relevant

dynamical systems theory required for generating the manifold used is provided in

Section 2.2.6. The manifold tube of interest for the trajectory designed in this chap-
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Figure 52. Family members of the L1 Lyapunov family in nondimensional rotating
barycentric frame
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ter is the stable invariant manifold that “departs” (in negative time) the design LPO

toward the Earth. An approximation for the stable manifold tube, propagated for

43.4 days in negative time, is shown in Figure 53 with a zoomed in plot in Figure 54.

The manifold tube associated ZVCs are also shown in the figures.
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Figure 53. Stable manifold tube propagated from LPO in nondimensional rotating
barycentric frame, propagated for 43.4 days

At the value of Jacobi constant associated with the stable manifold tube

(𝐶 = 3.18339545917064), the “L1 gateway” is open, but the “L2 gateway” is closed.
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Thus, motion around the Earth and the Moon is possible; however, the transitioning

from the interior region to the exterior region beyond L2 and L3 is impossible without

propulsion. For the trajectory designed in this chapter, a free-variable to be optimized

is the location in which the spacecraft begins coasting on the stable invariant manifold.

Specifically, the insertion point on a specified stable manifold trajectory is a design

parameter.

4.1.3 PSO Initial Guess and NLP Improvement

To generate the PSOIG in this chapter, the free-variables are straightforward and a

creative parameterization scheme is not required. Since impulsive burns are assumed,

the PSO is set up to optimize boundary conditions for the TPBVP, which for a

portion of the transfer, manifests as Δ𝑉 components. For a three impulse transfer,

the number of design parameters is small, thus, PSO should not have difficulty with

the dimension of the search space. Unfortunately, a difficulty due to the complexity

of the dynamical environment is encountered. The difficulty arises in attempting to

find appropriate constraint weighting factors. For PSO, optimality conditions are not

checked, the final solution is the global best candidate solution once the iteration

count reaches 𝑘𝑚𝑎𝑥.

The PSOIGs generated in the next section are passed to fmincon for improvement

in terms of Δ𝑉 and continuity. A benefit of using impulsive burns is that control

variables do not have to be inserted during the integration. As such, the numerical

integration between impulses is numerically integrated using ode45. Without the need

for control insertion, the problem size is much smaller compared to the transfers in

the previous chapter, therefore, providing gradient information to the NLP solver is

recommended. The gradient information takes on the form of equations (79) and

(80), noting that fmincon requires the transposes of each of the gradient matrices
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when they are supplied. In employing fmincon for NLP improvement, the function

tolerance ‘FunTol’ and constraint tolerance ‘ConTol’ are left at the default values

of 10−6. The function tolerance and constraint tolerance directly correspond to the

tolerances that must be met for optimality. The next section details the design and

presents the results for the LEO to LPO three impulse transfer.

4.2 Results

The trajectory designed in this section begins at LEO altitude (300 km) and ends

on the LPO generated in the previous section. The transfer consists of three impulsive

burns where the objective is to minimize the total magnitude of the impulsive burns.

The first burn is used to leave LEO and approach the stable manifold trajectory

insertion point. After arriving at the manifold insertion point, a second burn is used

to get “on” the manifold trajectory in terms of velocity, as position continuity has

already been met within a certain tolerance. After coasting on the stable manifold

trajectory, a final burn is used to enter the LPO.

To define the boundary conditions, first the particular LEO is defined by the

following initial state in nondimensional units.

𝑋𝐿𝐸𝑂(𝑡0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.00522229846503999

0

0

7.53

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(124)

Due to the existence of an additional gravitational body, this LEO is not Keplerian

in the sense that it is not perfectly circular or periodic. Instead, this approximation

of a 300 km altitude LEO returns to almost the initial point after one period. The

approximate “period” of this orbit is 1.5216 hours. In order to allow for a variable
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LEO departure point, the first free parameter is the time that the LEO orbit is

propagated, 𝑡𝐿𝐸𝑂, before the first impulse occurs. The initial LEO as well as its

associated ZVCs are shown in Figure 55.
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Figure 55. Initial LEO altitude orbit and associated ZVCs in rotating barycentric
frame, propagated for 1.52 hours

The ZVCs in the figure show that, at the initial energy level, the motion of the

spacecraft is bounded to stay within the vicinity of the Earth. A similar region is

accessible about the Moon; however, motion in that accessible region requires the

spacecraft to begin within that accessible region. Due to the boundedness, it is clear

why an impulsive burn(s) is required to reach the LPO.

The next two free parameters are the velocity in the 𝑥 direction, 𝑉𝑥1, and velocity

in the 𝑦 direction, 𝑉𝑦1, after the first impulse occurs. The fourth parameter is the time

of flight that the state after the first impulse is propagated, 𝑡1. The optimizer seeks to
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choose 𝑉𝑥1, 𝑉𝑦1, and 𝑡1 such that the spacecraft stops exactly at the manifold insertion

point after 𝑡1 has elapsed while still minimizing the initial impulse made. The final

design parameter is the manifold insertion point. This is encompassed by a single

time parameter 𝑡𝑀 , that defines the amount of time the stable manifold trajectory

is propagated in reverse time from the LPO. The initial state 𝑋𝑠(𝑡0) for the chosen

stable manifold trajectory in this scenario is given below in nondimensional units.

𝑋𝑠(𝑡0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.841518629433691

0.031415828337320

0.019345235864132

−0.023166570216752

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(125)

The stable manifold trajectory with the initial conditions in equation (125) is shown

in Figure 56 with a zoomed-in view in Figure 57.

Per the method used to generate the stable manifold trajectory given in Section

2.2.6, an important note is that a “true” asymptotic stable manifold trajectory is

not used. The stable manifold trajectory used and depicted in Figures 56 and 57

is an approximation of the true asymptotic stable manifold trajectory due to the

displacement, 𝑑, initially incurred. From the figures, the stable manifold trajectory,

in many instances, approaches its associated ZVCs; however, they are not crossed

during the integration time. The ZVCs show that the “L1 gateway” is open to the

extent required to allow the LPO to exist around the L1 point. This assumes only a

minor burn is required near the LPO. In reality, the ZVCs would adjust according to

the small change in 𝐶 incurred after the final burn. The next section discusses and

presents the PSOIG for the three impulse trajectory.
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Figure 56. Chosen stable manifold trajectory and associated ZVCs in rotating barycen-
tric frame, propagated for 86.8 days
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4.2.1 PSO Initial Guess Generation

Initially, the PSO was set up to solve for all five of the parameters previously

defined (𝑡𝐿𝐸𝑂, 𝑉𝑥1, 𝑉𝑦1, 𝑡1, and 𝑡𝑀). However, this did not provide the desired results

as the optimizer tended to converge on the first particle that came close to satisfying

the boundary conditions at the randomly guessed manifold insertion point. Changing

the weighting of the constraints in the augmented cost function, after several trials,

did not result in improved convergence behavior. As a result, the following PSO setup

is conducted for a range of manifold insertion points starting at 1 nondimensional time

all the way to 10 nondimensional time with a 0.5 nondimensional time step. This

corresponds to nineteen individual TPBVPs that PSO must solve.

As previously stated, the variable manifold insertion point is removed from the

free-variable array such that 𝑃 is now defined as

𝑃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑡𝐿𝐸𝑂

𝑉𝑥1

𝑉𝑦1

𝑡1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(126)

where the bounds in nondimensional units on 𝑃 are given by

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.000001

−13

−13

0.01

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≤ 𝑃 ≤

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0.0146

13

13

5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(127)

The velocity component bounds are dictated by first calculating the velocity re-

quired to be at the energy level associated with the stable manifold at the barycenter

(𝑥 = 0, 𝑦 = 0). The required velocity is 10.1 nondimensional units. Given the as-
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sumption that an efficient trajectory conducts most of the required change in energy

in the first impulse at LEO and only requires a smaller burn to get onto the manifold

trajectory, an efficient trajectory does not require any one velocity component to be

much more than 10.1 nondimensionally. Therefore, the velocity bounds are set to be

just above the 10.1 nondimensional velocity requirement. The time of flight bound of

5 nondimensional time units (21.7 days) is set so that the segment from LEO to the

manifold insertion point does not take an unreasonably long amount of time. Lastly,

the 𝑡𝐿𝐸𝑂 bounds correspond to one revolution of the LEO.

The constraints are set up to enforce position continuity at the manifold insertion

point.

𝜑(𝑥𝑖,𝑘) =

⎡⎢⎣ 𝑥𝑀(𝑡𝑀)− 𝑥1(𝑡1)

𝑦𝑀(𝑡𝑀)− 𝑦1(𝑡1)

⎤⎥⎦ = 0 (128)

In addition to the satisfying the constraints, the cost function is set to minimize

the total Δ𝑉 . Since the final burn is a function of the manifold trajectory chosen

already, the third burn is not included in the cost function. The modified cost function

is defined as

𝐽 = ‖𝜑1‖+ ‖𝜑2‖+ 0.1(Δ𝑉1 +Δ𝑉2) (129)

where

Δ𝑉1 =
√︀
[�̇�𝐿𝐸𝑂(𝑡𝐿𝐸𝑂)− �̇�1(𝑡0)]2 + [�̇�𝐿𝐸𝑂(𝑡𝐿𝐸𝑂)− �̇�1(𝑡0)]2

Δ𝑉2 =
√︀

[�̇�𝑀(𝑡𝑀)− �̇�1(𝑡1)]2 + [�̇�𝑀(𝑡𝑀)− �̇�1(𝑡1)]2
(130)

The Δ𝑉 s are scaled down by a factor of 0.1 to prioritize satisfying the position con-

tinuity constraints in equation (128) prior to optimizing the total change in velocity.

The PSO results for each solved TPBVP corresponding to different manifold insertion

points using 500 particles and 500 iterations are shown in Figure 58.

In Figure 58, the highlighted green trajectory is the approximation of the stable

manifold trajectory. The different colored segments each represent the PSOIG for
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Figure 58. Nineteen PSO generated trajectories for various stable manifold insertion
points in barycentric rotating frame (ZVCs not shown)
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a particular insertion point onto the manifold trajectory while still allowing for a

variable LEO departure point. Table 10 shows the Δ𝑉 s for each of the PSOIGs.

Table 10. PSO trajectory specifications

𝑡𝑀 (nd) 𝑡𝐿𝐸𝑂 (hours) Δ𝑉1 (km/s) Δ𝑉2 (km/s) 𝑡1 (days) Δ𝑉1 +Δ𝑉2 (km/s)

1.0 1.0298 3.6258 0.9860 2.4668 4.6118

1.5 0.0198 3.0808 0.9682 13.0274 4.0491

2.0 1.1203 3.3818 0.7866 5.3286 4.1683

2.5 0.8401 3.1614 0.6427 2.4446 3.8041

3.0 0.9104 3.9425 1.0043 1.0494 4.9468

3.5 0.4028 2.8713 1.4637 5.6253 4.3350

4.0 0.1272 3.2976 0.7257 4.0586 4.0233

4.5 0.0104 3.0608 0.7494 2.5571 3.8102

5.0 0.0104 3.0665 0.7304 3.0726 3.7969

5.5 0.0104 4.8887 1.3379 0.7348 6.2266

6.0 0.7918 3.8150 1.6669 0.9466 5.4819

6.5 0.6717 3.8242 2.4501 1.0699 6.2744

7.0 0.6972 4.2843 3.6618 0.7881 7.9462

7.5 0.6974 4.7339 0.7181 1.9452 5.4519

8.0 1.5439 3.2870 1.5622 5.3894 4.8492

8.5 1.1585 2.9466 1.0466 2.0285 3.9932

9.0 1.1073 3.0335 0.8384 2.5217 3.8718

9.5 1.5216 8.0775 0.9003 2.0629 8.9778

10.0 1.1059 3.4118 2.6505 0.6937 6.0623

The lowest two-impulse Δ𝑉 is 3.7969 km/s at the stable manifold trajectory

insertion point corresponding to a 𝑡𝑀 of 5 nondimensional time units, or 21.7 days.
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Even though some of the guesses show lower Δ𝑉 than others, it cannot be assumed

that any particular PSOIG results in the smallest Δ𝑉 after NLP improvement. As

a result, all of the initial guesses are supplied individually to fmincon in the next

section.

4.2.2 NLP Improvement

To improve the PSOIGs using fmincon, a few additions need to be made to the

setup. First, due to the increased robustness of fmincon compared to PSO, in addition

to the four parameters varied in the previous section, fmincon also varies 𝑡𝑀 in the

free-variable array. Thus, 𝑃 is modified and expressed below.

𝑃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡𝐿𝐸𝑂

𝑉𝑥1

𝑉𝑦1

𝑡1

𝑡𝑀

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(131)

As noted in the previous chapter, fmincon is able to handle the cost function and

constraint array separately. The cost function is formulated in order to minimize the

Δ𝑉 𝑠 for the first two impulses.

𝐽 = Δ𝑉1 +Δ𝑉2 (132)

where

Δ𝑉1 =
√︀

[�̇�𝐿𝐸𝑂(𝑡𝐿𝐸𝑂)− �̇�1(𝑡0)]2 + [�̇�𝐿𝐸𝑂(𝑡𝐿𝐸𝑂)− �̇�1(𝑡0)]2

Δ𝑉2 =
√︀

[�̇�𝑀(𝑡𝑀)− �̇�1(𝑡1)]2 + [�̇�𝑀(𝑡𝑀)− �̇�1(𝑡1)]2
(133)
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In addition, the constraints are identical to those used in the PSO setup in equa-

tion (128).

𝐶(𝑃 ) =

⎡⎢⎣ 𝑥𝑀(𝑡𝑀)− 𝑥1(𝑡1)

𝑦𝑀(𝑡𝑀)− 𝑦1(𝑡1)

⎤⎥⎦ = 0 (134)

The bounds on the variables are identical to those used in the previous section in

equation (127) with the addition of the bounds on 𝑡𝑀 set to 0.00001 and 15 nondi-

mensional time. The bounds on 𝑡𝑀 span the PSOIGs and allow additional freedom

to increase the last guess by 5 nondimensional time units.

The gradient information for the objective function and the constraints is supplied

to fmincon. First, the supplied objective function gradient is given below.

𝜕𝐽

𝜕𝑃
=

[︂
𝜕𝐽
𝜕𝑡𝑀

𝜕𝐽
𝜕𝑉𝑥

𝜕𝐽
𝜕𝑉𝑦

𝜕𝐽
𝜕𝑡1

𝜕𝐽
𝜕𝑡𝐿𝐸𝑂

]︂𝑇
(135)

Effort must be made to understand the functional dependencies when defining each

of the elements. A crucial distinction is that when taking the partial derivative with

respect to 𝑡𝑀 , the fact that 𝑡𝑀 corresponds to negative time must be considered with

an additional negative sign. For the constraint gradient, the matrix takes on the form

below.

𝜕𝐶

𝜕𝑃
=

⎡⎢⎣ 𝜕𝐶1

𝜕𝑡𝑀

𝜕𝐶1

𝜕𝑉𝑥

𝜕𝐶1

𝜕𝑉𝑦

𝜕𝐶1

𝜕𝑡1

𝜕𝐶1

𝜕𝑡𝐿𝐸𝑂

𝜕𝐶2

𝜕𝑡𝑀

𝜕𝐶2

𝜕𝑉𝑥

𝜕𝐶2

𝜕𝑉𝑦

𝜕𝐶2

𝜕𝑡1

𝜕𝐶2

𝜕𝑡𝐿𝐸𝑂

⎤⎥⎦
𝑇

(136)

In the constraint gradient matrix, the first two columns are elements in the STM,

and the fourth column has elements equal to zero. Again, the partial derivatives

with respect to 𝑡𝑀 need to take into account the negative time aspect previously

mentioned. Supplying the gradient information improves the speed of fmincon be-

cause the gradients do not need to be calculated via finite differencing, which can be

computationally expensive.
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After supplying fmincon with all of the PSOIGs, the best trajectory in terms

of Δ𝑉 was found using the 𝑡𝑀 = 5 nondimensional time PSOIG. The trajectory is

shown in both the barycentric rotating frame and an Earth-centered inertial frame in

Figures 59 and 60 respectively.

Δ𝑉1 

Δ𝑉2 

Δ𝑉3 

Figure 59. Three impulsive transfer from LEO to L1 LPO in rotating barycentric frame,
23.4 day transfer (ZVCs not shown)

In Figures 59 and 60, it is apparent how different the same trajectory can look

depending on the reference frame. The barycentric rotating frame offers a simple view

where the relative distances between the spacecraft and the equilibrium points or the

primaries is obvious. In the more traditional Earth-centric inertial view, the actual

flight path is much easier to discern. A nuance is that the Earth-centric inertial
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Δ𝑉1 
Δ𝑉2 

Δ𝑉3 

Figure 60. Three impulsive transfer from LEO to L1 LPO in Earth-centered inertial
frame, 23.4 day transfer
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view depicted is not equatorial, but at the inclination of the plane of the Moon’s

orbit about the Earth. Both the rotating and inertial frames offer an invaluable and

necessary perspective.

The total transfer requires 3.49 km/s where the final burn occurs at the first

intersection in position of the stable manifold trajectory approximation and the LPO

and costs 0.00115 km/s (1.15 m/s). Note that the true stable manifold trajectory

would asymptotically approach the LPO instead of readily supplying an intersection

in position. The magnitudes for all three impulses are given in Table 11.

Table 11. LEO to LPO trajectory impulse magnitudes

Impulse Magnitude (km/s)

Δ𝑉1 2.92635

Δ𝑉2 0.57102

Δ𝑉3 0.00115

Δ𝑉𝑡𝑜𝑡𝑎𝑙 3.49851

The time of flight from the initial starting point on the 𝑥-axis to LPO insertion

is 23.4033 days. The final NLP improved 𝑃 array is given below.

𝑃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑡𝐿𝐸𝑂

𝑉𝑥1

𝑉𝑦1

𝑡1

𝑡𝑀

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.1488× 10−5 days

−0.0801471798017611 km/s

10.5278443326929 km/s

3.3396 days

20.0636 days

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(137)

The PSOIGs on either side of the 𝑡𝑀 = 5 guess within 1 nondimensional time con-

verged on the same answer, providing insight as to the convergence window for this

locally optimal solution. The other PSOIGs resulted in different converged solutions
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at different manifold trajectory insertion points, but for greater Δ𝑉 .

As explored in the previous chapter, the question of the practicality of the designed

transfer is important. Since the burns are assumed to be impulsive, is it also assumed

that the spacecraft is utilizing chemical propulsion with an 𝐼𝑠𝑝 of 300 s. For an

approximate spacecraft mass, NASA’s ARTEMIS mission that sent two satellites to

the Earth-Moon L1 and L2 points had a total weight of approximately 250 kg [81].

Assuming an addition 250 kg for the insertion vehicle, the insertion vehicle would

require 1,136 kg of fuel, or a total wet mass of 1,636 kg. The number of launch

vehicles that can satisfy this mass to LEO requirement is large; however, it may be

impractical to fly a design to LEO that requires thousands of kilograms of fuel, when

an initial GTO parking orbit is more practical. Prior to conducting such a mission,

additional simulations would need to be conducted for a GTO starting orbit in the

spatial CR3BP (allows 3-D motion out of the plane of the primaries) allowing for a

variable LPO insertion point to make the trajectory more practical.

4.3 Chapter Summary

This chapter covered the methodology and results for designing a three impulse

transfer from LEO altitude to an LPO about the Earth-Moon cislunar collinear La-

grange point. The design takes advantage of an approximation of an invariant stable

manifold trajectory coast arc to efficiently approach the target LPO. The manifold

trajectory is efficient in the fact that it exploits dynamical systems theory to match

the dynamical “flow” of the environment. PSO, while initially intended to provide an

initial guess for the entire three impulse transfer, had constraint weighting difficulties

and was instead used to solve simpler TPBVPs across a range of values for the stable

manifold trajectory insertion point. The initial guesses were then supplied to fmincon

and optimized with the stable manifold trajectory insertion point included as a design
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parameter. The final trajectory required 3.49 km/s in Δ𝑉 and 23.4 days in time of

flight. A final and important note is that the trajectory designed is at best a locally

optimal given the PSOIG, and a claim of global optimality cannot be made. The

next and final chapter summarizes the present work and provides a discussion on the

collective conclusions found in the current investigation.
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5. Conclusions

The purpose of this investigation is to provide a viable methodology for designing

spacecraft trajectories that are unorthodox or exist in a complex dynamical envi-

ronment. The existence of robust optimization techniques allows for a variety of

problems and scenarios to be solved; however, these algorithms required an initial

guess to be initialized. The sensitivity of the system dictates the quality of the initial

guess required. For the trajectories designed in this investigation, an initial guess is

not readily available and many of the more complex design scenarios exhibited limited

regions of convergence. Particle swarm optimization is offered as a tool to generate

the initial guess for a locally optimal minimum-fuel trajectory.

PSO boasts the ability to globally search the solution space without any initial

conditions. In addition, the algorithm is very simple to implement with a small num-

ber of algorithmic parameters when compared to other evolutionary algorithms. PSO

is not without faults and has difficulty enforcing equality constraints. In this inves-

tigation, a penalty method is employed thereby adding the constraints to the cost

function after they have been scaled by a user defined coefficient. The main concern

when applying PSO to a new problem is choosing constraint weighting factors such

that the algorithm is not ill-conditioned [6]. Due to this concern, some insight into

the dynamical environment is useful such that the bounds on the design variable are

tight yet not over-constraining . For example, in the case of the trajectory designed

in the CR3BP, a constant energy-like quantity unique to the dynamical system is

used to provide smart bounds on two of the design variables. Throughout the inves-

tigation, experimenting with the PSO coefficients until acceptable results and levels

of convergence were gained proved to be more productive than experimenting with

manually created initial guesses to supply to the NLP solver. The methodology that

worked well and was employed throughout the investigation can be summarized by
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the following steps:

Step 1: Directly transcribe the problem into a TPBVP and define the system EOMs.

Step 2: Construct the terminal and path constraints that must be satisfied for the

solution to be feasible and define the augmented cost function using a penalty

function system.

Step 3: Scale the constraints as well as the cost index such that a dominant term

or a large disparity in magnitude does not exist in the PSO augmented cost

function. Run the PSO.

Step 4: Check the converged solution. If premature convergence occurs, a change

in the constraint weighting coefficients may be warranted. If the constraint

weighting factors are not an issue, increase the swarm size for a more exhaustive

search or the iteration count for higher levels of convergence.

Step 5: Give the PSOIG to the NLP solver. If the NLP solver does not converge,

Step 4 may require additional attention. The problem may also be too large

for the PSO to generate an initial guess within the NLP convergence window.

If the design space subjected to PSO is greater than fifty dimensions, make

simplifying assumptions or apply tighter bounds.

In employing the proposed methodology to the spacecraft trajectories in the cur-

rent investigation, several conclusions can be made.

1. The polynomial parameterization approach used for continuous con-

trol, used in conjunction with PSO, is useful for small problems.

In the near-Earth trajectory designs, the polynomial parametrization or spline

interpolation approach is successfully employed to turn a continuous time his-

tory into a finite number of parameters. However, for more complex scenarios to
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be optimized, a decrease in the proximity of the initial guesses to locally optimal

solutions is seen. The decrease in the “goodness” of the PSOIGs is a function of

the dimension of the design space and not an indication of an inherent limit to

the parameterization approach. For example, in the finite planar transfer, the

PSOIG proved to be a much better estimate of the optimal solution when com-

pared to the PSOIG for the non-coplanar transfer. The qualitative shape of the

control that the polynomial approach needed to approximate was not radically

different for either transfer. What did change was a doubling of the problem

size. The PSOIGs given fifty or higher dimensioned search spaces appeared to

show a greater departure from a locally optimal solution than results from the

other smaller dimensioned problems. Based on these results, the polynomial

approach, when used in conjunction with PSO, needs to be applied to problems

that can be parameterized to a small, finite set of design variables.

2. PSO requires some intuition to properly weigh constraints.

While PSO boasts a freedom from requiring an initial guess, when attempting

to solve a constrained problem, some intuition is still required. For example, for

the finite burn trajectories, the knowledge that the desired optimal solution does

not include superfluous coasting was factored into the appropriate constraint

weighting coefficient. Also, in the CR3BP, where there is arguably less readily

available intuition to exploit, the constraint weighting for the five parameter

problem proved to be too difficult. The problem of constraint weighting is well

documented and currently an unsolved problem. However, for difficult prob-

lems, systematically augmenting the constraint weighting may be less onerous

than manually creating an initial guess within the NLP convergence window.
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3. PSO performance can be enhanced with smart bounds.

Another avenue to implement intuition about the problem at hand is through

smart bounding of the design parameters. An example of this is seen in Chapter

4 when the value of Jacobi constant was used to bound the design parameters

for the three impulse transfer. While not required, smart bounds allow the

user to successfully generate an acceptable PSOIG for fewer particles and iter-

ations. Care must be taken to ensure that viable designs are not accidentally

being removed by applying overly-restrictive bounds. Also, in applying stringent

bounds, a global search of the entire design space is not being conducted. How-

ever, for very complex environments, a global search of a justifiably bounded

search space may be sufficient.

4. PSO excels at parameter optimization.

When control parameters do not need to be inserted into the shooting problem,

PSO excels at solving the TPBVP. As is shown in Chapter 4, PSO can provide

an initial guess to the differential correction algorithm if not solve the targeting

problem itself. The reason why PSO should not replace differential corrections is

that is it computationally expensive and does not exploit the EOVs to efficiently

tailor its search directions. PSO also demonstrates the ability to target periodic

orbits in the CR3BP, thus, the design applications of PSO are not limited

to spacecraft transfers, but may also be applied to exploring other possible

behavior in a complex design space.

5.1 Limitations and Future Work Recommendations

The current investigation is marked by limitations in certain areas. First, the

PSO algorithm utilized is kept constant throughout all of the test cases. That is, all
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algorithmic parameters are kept constant and other PSO variants are not explored.

Using other variants such as local PSOs may produce improved results in a few or

all of the test cases. In addition, the polynomial interpolation method used for the

low-thrust cases only utilizes fourth-order polynomials. An in-depth investigation is

required to determine the optimal order of the polynomials or if other parameteriza-

tion methods not using polynomials are better suited for the test cases conducted.

Further stressing the PSO-to-NLP methodology used in the current investigation can

be done by including additional, more complex constraints and design parameters.

Doing so would allow the user to better discern the limits of this design approach.

Next, the trial-and-error method for calculating appropriate constraint weighting fac-

tors is a coarse approach and should be further refined in future work. Lastly, a major

advantage of EAs is that they are claimed to boast a more global search of the design

space. Even though this claim is made, a conclusion about the global optimality of

the trajectories designed in the present work cannot be made. Further investigation

into the global optimality of trajectories designed using PSO should be conducted to

fully exploit the benefit of a more global search.

Based on the given conclusions and limitations, potential areas for future work or

in-depth investigation are as follows:

∙ Extend all the test cases conducted in the current investigation to similar trans-

fers starting at a GTO as opposed to LEO such that more practical solutions

are generated.

∙ Explore the trade-space between changing the degree of the polynomial vs. the

number of polynomials to parameterize continuous functions. Also, investigate

other parameterization schemes such as using a Fourier series and having PSO

optimize the Fourier coefficients.
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∙ Enforce continuity between the polynomial chains as well as allow variable or-

ders of polynomials for different segments. For high rate of change control

segments, greater degree polynomials may be advantageous.

∙ Conduct a more extensive investigation on PSO constraint weighting sensitivity,

or employ more advanced techniques such as variable constraint weighting.

∙ Increase the complexity of the low-thrust transfers by including throttling, vari-

able specific impulse (𝐼𝑠𝑝), and additional constraints such as power restriction

due to time in eclipse.

∙ Use low-thrust as opposed to impulsive burns to fly to the insertion point on

the L1 LPO stable manifold. Also, allow for the particular manifold trajectory

chosen to be an additional design variable.

∙ Investigate how local-best vs. global-best PSO variants may be used in the

CR3BP to see if PSO can handle additional parameters after the initial shooting

process.

∙ Incorporate a hybrid technique where PSO provides the initial guess to a dif-

ferential corrections scheme to shoot between two boundary conditions. The

converged trajectory is handled within a parent PSO routine that varies the

manifold trajectory and insertion point.

∙ Investigate post-optimality techniques to validate the level of optimality (local

or global) of any converged trajectory.

The list provided is not exhaustive but provides a guideline as to where further

investigation seems most desirable given the results of the current investigation.
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